Введение: Методические указания для работы с материалом кейса

Виды эконометрических моделей

Различают линейные и нелинейные эконометрические модели.

Линейная эконометрическая модельописывается уравнением:

Введение: Методические указания для работы с материалом кейса - student2.ru (1.1)

где y – объясняемая (эндогенная) переменная,

a0, a1 – параметры модели,

x – объясняющая (экзогенная) переменная,

u – случайная переменная.

Нелинейные парные эконометрические моделиделятся на два класса:

1) модели, нелинейные по объясняющим переменным, но линейные по параметрам, например:

• равносторонняя гипербола Введение: Методические указания для работы с материалом кейса - student2.ru

2) модели, нелинейные по параметрам, например:

• степенная Введение: Методические указания для работы с материалом кейса - student2.ru

• показательная Введение: Методические указания для работы с материалом кейса - student2.ru

• экспоненциальная Введение: Методические указания для работы с материалом кейса - student2.ru

Для построения парной линейной регрессии вычисляют следующие вспомогательные величины (для выборки из Введение: Методические указания для работы с материалом кейса - student2.ru наблюдений).

См. дополнительно литературу: [1, с. 31 - 35, c. 178 - 186]; [2, с. 60 - 63, с. 331 - 332]; [3, с. 49-71]; [5, с. 13 - 19, с. 52 - 60]; [7, с. 41 - 48, с. 62 - 80]; [8]; [9].

Оценивание параметров парной линейной эконометрической модели

Для исходной парной линейной эконометрической модели, представленной в видеВведение: Методические указания для работы с материалом кейса - student2.ruнеобходимо построить парную линейную регрессию вида Введение: Методические указания для работы с материалом кейса - student2.ru

Построение линейной регрессии Введение: Методические указания для работы с материалом кейса - student2.ru сводится к оценке ее параметров Введение: Методические указания для работы с материалом кейса - student2.ru и Введение: Методические указания для работы с материалом кейса - student2.ru

Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака Введение: Методические указания для работы с материалом кейса - student2.ru от оценочного Введение: Методические указания для работы с материалом кейса - student2.ru минимальна, т.е.

Введение: Методические указания для работы с материалом кейса - student2.ru (1.8)

Для линейной регрессии параметры Введение: Методические указания для работы с материалом кейса - student2.ru и Введение: Методические указания для работы с материалом кейса - student2.ru находятся из системы нормальных уравнений:

Введение: Методические указания для работы с материалом кейса - student2.ru (1.9)

Решая систему, находим оценку коэффициента парной линейной регрессии:

Введение: Методические указания для работы с материалом кейса - student2.ru (1.10)

и постоянный коэффициент

Введение: Методические указания для работы с материалом кейса - student2.ru (1.11)

Коэффициент Введение: Методические указания для работы с материалом кейса - student2.ru при объясняющей переменной Введение: Методические указания для работы с материалом кейса - student2.ru показывает, насколько изменится в среднем величина Введение: Методические указания для работы с материалом кейса - student2.ru при изменении значения Введение: Методические указания для работы с материалом кейса - student2.ru на единицу.

См. дополнительно литературу: [1, с. 35 - 44]; [2, с. 148 - 153]; [3, с. 49 - 71]; [5, с. 50 - 56]; [7, с. 41 - 48]; [8]; [9].

Теорема Гауса-Маркова и проверка ее гипотез

Если имеется выборка значений переменных y и x

(y1,x1), (y2, x2), …. ,(yn,xn)

линейной модели парной регрессии Введение: Методические указания для работы с материалом кейса - student2.ru то в рамках этой модели величины (y1,x1), (y2, x2), …. ,(yn,xn) связаны системой уравнений наблюдения объекта в виде линейных алгебраических уравнений:

Введение: Методические указания для работы с материалом кейса - student2.ru (1.12)

Данная система называется схемой Гауса-Маркова. В матричном виде она имеет вид:

Введение: Методические указания для работы с материалом кейса - student2.ru (1.13)

где

Введение: Методические указания для работы с материалом кейса - student2.ru - вектор наблюдений объясняющей переменной y,

Введение: Методические указания для работы с материалом кейса - student2.ru - ненаблюдаемый вектор случайных возмущений (остатков),

Введение: Методические указания для работы с материалом кейса - student2.ru - расширенная матрица наблюдаемых значений объясняющей переменной x,

Введение: Методические указания для работы с материалом кейса - student2.ru - вектор столбец неизвестных параметров парной линейной эконометрической модели, которые подлежат оцениванию по имеющейся выборке.

Теорема Гауса-Маркова

Если имеется матрица X уравнений наблюдений размером n x (k+1), где n > k+1, имеющая линейно-независимые столбцы, а случайные возмущения ui (i == 1,n), удовлетворяют следующим условиям:

E(u1) = E(u2) = … = E(un) = 0, (1.14)

Var(u1) = Var(u2)= …= Var(un) = σu2, (1.15)

Cov(ui,uj) = 0 для всех i ≠ j, (1.16)

Cov(xi,uj) = 0 для всех i и j, (1.17)

то тогда наилучшей линейной процедурой нахождения параметров эконометрической модели является метод наименьших квадратов (МНК), позволяющий найти эффективные и несмещенные оценки параметров модели.

При этом предполагается, что случайные остатки в уравнениях наблюдений распределены по нормальному закону.

Таким образом, для того, чтобы воспользоваться МНК для оценки параметров парной эконометрической модели, необходимо соблюдение всех четырех условий теоремы Гауса-Маркова.

Если соблюдается условие (1.15), то говорят, что случайные остатки в модели гомоскедастичные, в противном случае – гетероскедастичные.

См. дополнительно литературу: [1, с. 45 - 47]; [2, с. 153 - 162]; [3, с. 72 - 117]; [5, с. 60 - 64]; [7, с. 155 - 169]; [8]; [9].

Тест Голдфелда-Квандта

Тест Голдфелда-Квандта предназначен для проверки условия (1.15) теоремы Гауса-Маркова о гомоскедастичности случайного остатка в модели, т.е. проверяется статистическая гипотеза о равенстве дисперсий случайных остатков в наблюдаемых уравнениях

Н0: Var(u1) = Var(u2)= …= Var(un) = σu2

Реализация теста осуществляется по следующему алгоритму:

Шаг 1. Уравнения наблюдений Введение: Методические указания для работы с материалом кейса - student2.ru упорядочивают по возрастанию объясняющей переменной x.

Шаг 2. Полученный отсортированный массив разбивают на две равные части (n1 = n2 = n/2). Если массив большой или количество значений в массиве нечетное (для небольших массивов), то его разбивают на 3 части (n1 = n3 ≈ 0,3n). При этом число элементов в первой части и число элементов в третьей части должны быть одинаковыми.

Шаг 3. Для первой части отсортированного массива рассчитывается величина ESS1[1]:

Введение: Методические указания для работы с материалом кейса - student2.ru (1.18)

где Введение: Методические указания для работы с материалом кейса - student2.ru - оценка случайного возмущения (остатков) ui

Шаг 4. Аналогично рассчитывается величина ESS2 для другой части отсортированного массива:

Введение: Методические указания для работы с материалом кейса - student2.ru

Шаг 5. Вычисляется статистика Голдфелда-Квандта (GQ):

Введение: Методические указания для работы с материалом кейса - student2.ru и обратная ей Введение: Методические указания для работы с материалом кейса - student2.ru (1.19)

Шаг 6. Задается уровень значимости α и при количествах степеней свободы обоих частей массива v1 = v2 = n1-(k+1) определяется Fкрит = F1-α распределения Фишера по таблице 1 (см. Приложение 1), либо, если для расчетов применяется табличный процессор Excel, то Fкрит можно рассчитать, используя функцию FРАСПОБР(1- α; v1, v2).

Шаг 7. Гипотеза Н0 принимается, если справедливы следующие два неравенства

GQ ≤ Fкрит ,

GQ-1 ≤ Fкрит , (1.20)

т.е. случайный остаток в парной эконометрической модели в этом случае полагается гомоскедастичным. В противном случае гипотеза Н0 отклоняется и делается вывод, что случайный остаток в парной эконометрической модели является гетероскедастичным.

См. дополнительно литературу:[1, с. 32 - 49 ], [2, с. 186 - 189]; [5, с. 157 - 163]; [7, с. 41 - 48, с. 62 - 80]; [8]; [9].

Тест Дарбина – Уотсона

Тест Дарбина – Уотсона предназначен для проверки условия (1.3) теоремы Гауса - Маркова, т.е. проверки следующей гипотезы Н0:

Н0: Cov(ui,uj) = 0 для всех i ≠ j

Реализация теста осуществляется по следующему алгоритму:

Шаг 1. По уравнениям наблюдений Введение: Методические указания для работы с материалом кейса - student2.ru вычисляются оценки параметров модели и оценки случайных остатков Введение: Методические указания для работы с материалом кейса - student2.ru .

Шаг 2. Вычисляется значение статистики Дарбина – Уотсона (DW) по формуле:

Введение: Методические указания для работы с материалом кейса - student2.ru (1.21)

Областью изменения статистики DW является интервал (0,4).

Шаг 3. Из таблицы 2 (см. Приложение 1) по количеству наблюдений (n) и количеству (k) объясняющих переменных выбираются значения величин dL и dU.

Шаг 4. Проводится проверка, в какой из пяти подмножеств (0, dL), (dL, dU,), (dU, 4- dU), (4- dU, 4- dL), (4- dL, 4) интервала (0,4)попадает рассчитанное значение статистики DW (см. рис. 1.1), и делается вывод:

  cov>0 ? cov=0 ? cov<0
           
dL dU 4-dU 4-dL
             

Рисунок 1.1.

а) если значение статистики DW попадает в третий интервал (dU, 4- dU), то подтверждается гипотеза:

Н0: Cov(ui,uj) = 0 для всех i ≠ j,

б) если значение статистики DW попадает в первый интервал (0, dL), то гипотеза Н0 не подтверждается, а принимается альтернативная гипотеза:

Н1: Cov(ui,uj) > 0,

в) если значение статистики DW попадает в пятый интервал (4- dL, 4), то гипотеза Н0 не подтверждается, а принимается альтернативная гипотеза:

Н1: Cov(ui,uj) < 0,

г) если значение статистики DW попадает во второй (dL, dU,) или четвертый (4- dU, 4- dL) интервал, то отклонить или принять гипотезу Н0 не удается с использованием данного теста.

Тест Дарбина-Уотсона предполагает, что соблюдаются другие условия теоремы Гауса-Маркова.

См. дополнительно литературу:[1, с .32-49], [2, с. 60 - 63, с. 331 - 332]; [3, с. 72-117]; [5, с. 170 - 178]; [7, с. 272 - 278]; [8]; [9].

F - тест

Оценка значимости уравнения регрессии проводится с помощью Введение: Методические указания для работы с материалом кейса - student2.ru -критерия Фишера, который заключается в проверке гипотезы о статистичес­кой незначимости уравнения регрессии. Для этого выполняется сравнение фактического Введение: Методические указания для работы с материалом кейса - student2.ru и критического (табличного) Введение: Методические указания для работы с материалом кейса - student2.ru значений Введение: Методические указания для работы с материалом кейса - student2.ru - крите­рия Фишера.

Введение: Методические указания для работы с материалом кейса - student2.ru определяется из соотношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы, т.е.

Введение: Методические указания для работы с материалом кейса - student2.ru или Введение: Методические указания для работы с материалом кейса - student2.ru (1.25)

где n – численность выборки,

k – количество оцениваемых параметров при х (количество регрессоров).

Введение: Методические указания для работы с материалом кейса - student2.ru – максимально возможное значение критерия под влиянием случайных факторов при степенях свободы Введение: Методические указания для работы с материалом кейса - student2.ru =1, Введение: Методические указания для работы с материалом кейса - student2.ru = Введение: Методические указания для работы с материалом кейса - student2.ru -2 и уровне значимости Введение: Методические указания для работы с материалом кейса - student2.ru Введение: Методические указания для работы с материалом кейса - student2.ru находится из таблицы Введение: Методические указания для работы с материалом кейса - student2.ru -критерия Фишера (Таблица 1 Приложение 1), либо, если для расчетов применяется табличный процессор Excel, то его можно рассчитать, используя функцию FРАСПОБР(α;ν12).

Уровень значимости Введение: Методические указания для работы с материалом кейса - student2.ru – это вероятность отвергнуть правильную гипотезу при условии, что она верна.

Если Введение: Методические указания для работы с материалом кейса - student2.ru то гипотеза об отсутствии связи изучаемого показателя с фактором отклоняется и делается вывод о существенности этой связи с уровнем значимости Введение: Методические указания для работы с материалом кейса - student2.ru (т.е. уравнение регрессии значимо).

Если Введение: Методические указания для работы с материалом кейса - student2.ru то гипотеза принимается и признается статистическая незначимость и ненадежность уравнения регрессии.

T – тест

Для линейной регрессии значимость оцененных коэффициентов регрессии определяется с помощью Введение: Методические указания для работы с материалом кейса - student2.ru -критерия Стьюдента, согласно которому выдвигается гипотеза о случайной природе показателей, т.е. о незначимом их отличии от нуля. Далее рассчитываются фактические значения критерия Введение: Методические указания для работы с материалом кейса - student2.ru для каждого из оцениваемых коэффициентов регрессии, т.е.

Введение: Методические указания для работы с материалом кейса - student2.ru (1.26)

Введение: Методические указания для работы с материалом кейса - student2.ru (1.27)

где Введение: Методические указания для работы с материалом кейса - student2.ru и Введение: Методические указания для работы с материалом кейса - student2.ru – стандартные ошибкипараметров линейной регрессии определяются по формулам:

Введение: Методические указания для работы с материалом кейса - student2.ru (1.28)

Введение: Методические указания для работы с материалом кейса - student2.ru (1.29)

Введение: Методические указания для работы с материалом кейса - student2.ru – максимально возможное значение критерия Стьюдента под влиянием случайных факторов при данной степени свободы Введение: Методические указания для работы с материалом кейса - student2.ru и уровне значимости Введение: Методические указания для работы с материалом кейса - student2.ru находится из таблицы критерия Стьюдента (таблица 2 приложение 1), либо, если для расчетов применяется табличный процессор Excel, то его можно рассчитать, используя функцию CТЬЮДРАСПОБР(1-α;υ2).

Если Введение: Методические указания для работы с материалом кейса - student2.ru то гипотеза о несущественности коэффициента регрессии отклоняется с уровнем значимости Введение: Методические указания для работы с материалом кейса - student2.ru т.е. коэффициент ( Введение: Методические указания для работы с материалом кейса - student2.ru или Введение: Методические указания для работы с материалом кейса - student2.ru )не случайно отличается от нуля и сформировался под влиянием систематически действующего фактора Введение: Методические указания для работы с материалом кейса - student2.ru

Если Введение: Методические указания для работы с материалом кейса - student2.ru то гипотеза не отклоняется и признается случайная природа формирования параметра.

При проверке статистической значимости параметров модели можно использовать следующее приближенное правило[2]:

1) если |tфак| <1, то данный коэффициент не может быть признан значимым (доверительная вероятность меньше 0,7);

2) если 1< |tфак| <2, то данный коэффициент может быть признан значимым c доверительной вероятностью в диапазоне между 0,7 – 0,95;

3) 2< |tфак| <3, то данный коэффициент может быть признан значимым c доверительной вероятностью в диапазоне между 0,95 – 0,99;

4) если |tфак| >3, то значимость данного коэффициента очевидна (доверительная вероятность находится в диапазоне между 0,99 и выше).

При этом, чем больше объем выборки, тем надежнее вывод о значимости коэффициента.

См. дополнительно литературу: [1, с. 66 – 72], [2, с 302 -315], [3, c. 72 - 117], [5, с. 50-80], [7, с. 34 - 48], [8]; [9] [ ]

Значимость линейного коэффициента корреляции также проверяется с помощью Введение: Методические указания для работы с материалом кейса - student2.ru -критерия Стьюдента, т.е.

Введение: Методические указания для работы с материалом кейса - student2.ru Введение: Методические указания для работы с материалом кейса - student2.ru (1.30)

Гипотеза о несущественности коэффициента корреляции отклоняется с уровнем значимости Введение: Методические указания для работы с материалом кейса - student2.ru если Введение: Методические указания для работы с материалом кейса - student2.ru

Замечание. Для парной линейной регрессии проверка гипотезы о значимости коэффициента Введение: Методические указания для работы с материалом кейса - student2.ru и коэффициента корреляции Введение: Методические указания для работы с материалом кейса - student2.ru равносильна проверке гипотезы о существенности уравнения регрессии в целом, т.е. Введение: Методические указания для работы с материалом кейса - student2.ru

Для каждого полученного параметра парной линейной регрессии сначала рассчитывают предельную ошибку:

Введение: Методические указания для работы с материалом кейса - student2.ru Введение: Методические указания для работы с материалом кейса - student2.ru (1.31)

а затем рассчитываются доверительные интервалы:

Введение: Методические указания для работы с материалом кейса - student2.ru (1.32)

Введение: Методические указания для работы с материалом кейса - student2.ru

Если в границы доверительного интервала попадает ноль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр принимается равным нулю, так как он одновременно не может принимать и положительное, и отрицательное значения.

См. дополнительно литературу: [1, с. 31 - 62]; [2, с. 302 -316]; [3, c. 72 -117]; [5, с. 60 - 64]; [7, с. 48 - 57]; [8]; [9].

Пример построения и исследования парной линейной эконометрической модели

Задача. Сотрудник муниципального образования должен подготовить обоснованные предложения к проекту плана развития района на 2014 и 2015 гг. по графе «Потребительские расходы в расчете на душу населения» в зависимости от средней заработной платы и выплат социального характера. У сотрудника имеются статистические данные по этим показателям с 1990 г. по 2013 г. (см. табл. 2.1). При этом планом предусмотрено, что в 2014 г рост заработной платы и выплаты социального характера увеличатся на 8% по сравнению со средним значением за последние 5 лет, а в 2015 г – увеличатся на 12%.

Таблица 2.1

Год Потребительские расходы в расчете на душу населения, тыс. руб., у Средняя заработная плата и выплаты социального характера, тыс. руб., х
? 8,0%
? 12,0%

В качестве исследования сначала выбираем вариант парной линейной эконометрической модели вида:

Введение: Методические указания для работы с материалом кейса - student2.ru

Что же предстоит сделать, чтобы ответить на поставленный в задаче вопрос?

1. Определить форму связи между переменными х и у.

2. Оценить параметры парной линейной регрессии, предполагая, что соблюдаются условия теоремы Гауса-Маркова.

3. Построить график исходной модели и на него «наложить» график полученной парной регрессии.

4. Построить график остатков полученной парной линейной регрессии и по нему определить их характер.

5. Проверить выполнение отдельных условий теоремы Гауса-Маркова: проверить остатки на гомоскедастичность и на автокорреляцию.

6. Оценить тесноту связи между переменными х и у, используя для этого показатели корреляции и детерминации.

7. Оценить силу связи объясняемой переменной с объясняющей с помощью среднего коэффициента эластичности.

8. Оценить с помощью средней ошибки аппроксимации качество полученной регрессии, т.е. отклонение расчетных значений от фактических.

9. Оценить статистическую надежность результатов по полученной регрессии с помощью F – критерия Фишера.

10. Оценить качество полученных параметров парной регрессии.

11. Определить доверительный интервал прогноза для уровня значимости α = 0,5 и проверить полученные параметры регрессии на адекватность.

12. Определить доверительный интервал прогноза для уровня значимости α = 0,5 и проверить полученную регрессию на адекватность.

13. Рассчитать прогнозные значения по графе «Потребительские расходы в расчете на душу населения» в зависимости от средней заработной платы и выплат социального характера на 2014 и 2015 годы.

14. Результаты проведенных исследований следует внести в отчет (см. Приложение 2).

Занятие 1.

1. Коэффициент корреляции rxy=0.82

2. Форма зависимости между объясняемой y и объясняющей x переменными, если построить график y=f(x) (см. рис. 2.1.), будет нелинейной.

Введение: Методические указания для работы с материалом кейса - student2.ru

Рисунок 2.1.

3. Расчет параметров парной линейной регрессии.

Для расчета параметров парной линейной регрессии представленной эконометрической модели используем формулы (1.10) и (1.11):

Введение: Методические указания для работы с материалом кейса - student2.ru Введение: Методические указания для работы с материалом кейса - student2.ru

Для этого предварительно рассчитаем следующие значения:

Введение: Методические указания для работы с материалом кейса - student2.ru

Введение: Методические указания для работы с материалом кейса - student2.ru

Введение: Методические указания для работы с материалом кейса - student2.ru

Введение: Методические указания для работы с материалом кейса - student2.ru

Расчет параметров а0 и а1 представлен в таблице 2.2.

В результате расчетов получаем

а0 = 132,15; а1 = 0,4186.

Таблица 2.2.

Год y x xy x2
Среднее значение 407,71 658,33 275792,7 451045,8

4. Построим график исходной модели и на него «наложим» график полученной парной линейной регрессии, см. рис. 2.2 (для этого предварительно надо рассчитать оценочные значения Введение: Методические указания для работы с материалом кейса - student2.ru , см. табл. 2.3.).

Введение: Методические указания для работы с материалом кейса - student2.ru

Рисунок 2.2

Таблица 2.3

x y E
295,4 14,6
293,3 56,7
360,3 -30,3
416,8 8,2
471,2 30,8
458,6 -98,6
462,8 -42,8
460,7 44,3
299,6 -19,6
354,0 -49,0
374,9 -34,9
433,5 26,5
425,1 14,9
421,0 -6,0
404,2 -59,2
450,3 -45,3
458,6 -8,6
483,7 31,3
379,1 10,9
358,2 11,8
408,4 26,6
418,9 39,1
446,1 43,9
450,3 34,7

5. Построим гистограмму остатков между исходными (статистическими) значениями переменой y и полученными Введение: Методические указания для работы с материалом кейса - student2.ru в результате парной линейной регрессии (табл. 2.3, столбец e), см. рис. 2.3.

Введение: Методические указания для работы с материалом кейса - student2.ru

Рисунок 2.3.

По графику остатков можно судить, что они гомоскедастичные.

6. Проведем процедуру оценки параметров регрессионной парной линейной модели. Для этого воспользуемся инструментом Регрессия процедуры Анализ данных табличного процессора Excel, которая будет доступна, если подключить «Пакет анализа». При нажатии в основном меню табличного процессора Excel клавиши Данные становится возможной применение инструментов процедуры Анализ данных.

В высвечиваемом на экране окне Регрессия (см. рис. 2.4) надо внести значения yi (Входной интервал Y) и значения хi (Входной интервал Х). Можно также указать параметры вывода или оставить те, какие предлагает программа. После проведенных операций (назначений) нажать на клавишу ОК.

Введение: Методические указания для работы с материалом кейса - student2.ru

Рисунок 2.4

В результате выполнения инструмента Регрессия на экран дисплея выдается следующая информация, см. рис. 2.5 (результаты приведены для данных рассматриваемой задачи).

ВЫВОД ИТОГОВ            
             
Регрессионная статистика          
Множественный R 0,8202          
R-квадрат 0,6728 R2        
Нормированный R-квадрат 0,6579          
Стандартная ошибка 40,4990 σ        
Наблюде-ния          
             
Дисперсионный анализ            
Df SS MS F Значимо-сть F  
Регрессия 74183,235 74183,2359 45,229 9,27E-07  
Остаток 36083,723 1640,169      
Итого 110266,958        
             
Коэффициен-ты Стандартная ошибка t-статистика P-Значение Нижние 95% Верхние 95%
Y-пересече-ние 132,155 41,799 3,162 0,0045 45,47 218,84
Переменная X1 0,419 0,062 6,725 9,27E-07 0,29 0,5476

Рисунок 2.5

Пояснения к рисунку 2.5[3]:

۰Множественный R – коэффициент корреляции Пирсона, равный корню квадратному из R-квадрат,

۰R-квадрат – коэффициент детерминации, характеризует тесноту связи объясняемой и объясняющих переменных,

۰Наблюдения – количество (n) наблюдений в массиве,

۰ df (Регрессия) – число объясняющих переменных,

۰df (Остаток) – число степеней свободы,

۰df (Итого) – Размер выборки минус 1,

۰SS (Регрессия) – RSS,

۰SS (Остаток) – ESS,

۰SS (Итого) – TSS,

۰F – статистика для оценки связи между объясняемой и объясняющими переменными,

۰Коэффициенты (Y-пересечение) – оценка параметра a0,

۰Коэффициенты (Переменная X1) - оценка параметра a1,

۰Стандартная ошибка (Y-пересечение) – среднеквадратичная ошибка оцененного параметра a0,

۰Стандартная ошибка (Переменная X1) - среднеквадратичная ошибка оцененного параметра a1,

۰t-Статистика (Y-пересечение) – отношение Коэффициент / Стандартная ошибка для параметра a0,

۰t-Статистика (Переменная X1) - отношение Коэффициент / Стандартная ошибка для параметра a1,

۰P-Значение (Y-пересечение) – уровень значимости α для значений t-Статистика для параметра a0,

۰P-Значение (Переменная X1) – уровень значимости α для значений t-Статистика для параметра a1,

۰Верхние и Нижние - границы доверительного интервала для параметров уравнения регрессии, вычисляемые при различных уровнях значимости α.

Сравните полученные значения параметров парной линейной регрессии с рассчитанными ранее по формулам (п.2) данного занятия.

Внимание!

Занятие 2.

Проведем проверку выполнение 2-го и 3-его условия теоремы Гауса-Маркова.

А.Тест Голдфелда-Квандта (тест GQ)

Чтобы проверить 2-е условие теоремы Гауса-Маркова (проверка статистической гипотезы о равенстве дисперсий случайных остатков в наблюдаемых уравнениях Н0: Var(u1) = Var(u2)= …= Var(un) = σu2) следует провести тест Голдфелда-Квандта, т.е. проверить остатки на гомоскедастичность.

1. Исходные данные для переменных х и у отсортируем по возрастанию значений х, а затем разобьем весь исходный массив из 24 значений на два равных подмассива по 12 значений, см. табл. 2.4.

Таблица 2.4

Год Потребительские расходы в расчете на душу населения, тыс. руб., у Средняя заработная плата и выплаты социального характера, тыс. руб., х

2. Для первого и второго подмассивов найдем значения ESS (ESS1 – для первого (верхнего) подмассива из 12 значений, ESS2 – для второго (нижнего) подмассива из 12 значений). Для этого воспользуемся инструментом Регрессия[4]. Значение ESS1 берем после проведенных расчетов с первым подмассивом (см. рис. 2.6[5] - выделенная ячейка), а ESS2 - после проведенных расчетов со вторым подмассивом (см. рис. 2.7 - выделенная ячейка).

ВЫВОД ИТОГОВ    
       
Регрессионная статистика    
Множественный R 0,763172    
R-квадрат 0,582431    
Нормированный R-квадрат 0,540674    
Стандартная ошибка 37,66661    
Наблюдения    
       
Дисперсионный анализ    
Df SS MS
Регрессия 19789,27 19789,27
Остаток 14187,73 1418,773
Итого  

Рисунок 2.6

ВЫВОД ИТОГОВ    
       
Регрессионная статистика    
Множественный R 0,37051    
R-квадрат 0,137277    
Нормированный R-квадрат 0,051005    
Стандартная ошибка 46,48313    
Наблюдения    
       
Дисперсионный анализ  
Df SS MS
Регрессия 3438,101 3438,101
Остаток 21606,82 2160,682
Итого 25044,92  

Рисунок 2.7.

В результате были получены следующие значения:

ESS1 = 14187,73; ESS2 = 21606,82,

3. Рассчитаем значения GQ и GQ-1 по формуле (1.19):

GQ = 0,6566;

GQ-1 = 1,5229.

4. Для сравнения полученных значений GQ и GQ-1 с Fкрит найдем его значение по таблице 1 Приложения 1 при степени свободы, равной 10, или воспользуемся функцией FРАСПОБР (α; ν1; ν2), где ν1 = ν2.

FРАСПОБР(0,05;10;10),

Fкрит = 2,978

5. Сравним полученные значения GQ и GQ-1 с значением Fкрит по формуле (1.20). Оба значения, т.е. GQ (0,6566) и GQ-1(1,5229) меньше значения Fкрит (2,978). Тем самым подтверждается статистическая гипотеза о равенстве дисперсий случайных остатков в наблюдаемых уравнениях Н0: Var(u1) = Var(u2)= …= Var(un) = σu2), т.е. остатки обладают гомоскедастичностью.

В. Тест Дарбина – Уотсона (тест DW)

Для проверки 3-его условия теоремы Гауса-Маркова (проверка статистической гипотезы об отсутствии автокорреляции случайных остатков в наблюдаемых уравнениях Н0: Cov(ui,uj) = 0 для всех i ≠ j, следует провести тест Дарбина – Уотсона.

1. Проведем оценку параметров исходной линейной эконометрической модели, используя инструмент Регрессия, см. рис. 2.8. – значения выделены цветом. Получаем следующие оценочные значения параметров линейной парной регрессии:

а0 = 132,15; а1 = 0,4186.

2. Для расчета статистики DW по формуле (1.21) проведем расчет числителя, так как знаменатель получается из проведенных расчетов в п.1 подраздела В раздела 2.2. (ESS =36083,723 – выделен цветом на рис. 2.8).

Проведенные расчеты иллюстрируются таблицей 2.5.

ВЫВОД ИТОГОВ        
Регрессионная статистика      
Множественный R 0,820      
R-квадрат 0,673 R2    
Нормированный R-квадрат 0,658      
Стандартная ошибка 40,499 Σ    
Наблюдения      
Дисперсионный анализ      
Df SS MS F
Регрессия 74183,235 74183,235 45,229
Остаток 36083,723 1640,169  
Итого 110266,958    
         
<

Наши рекомендации