Условия независимости криволинейного интеграла 2-го рода
От пути интегрирования.
Рассмотрим криволинейный интеграл 2-го рода , где L – кривая, соединяющая точки M и N. Пусть функции P(x, y) и Q(x, y) имеют непрерывные частные производные в некоторой области D, в которой целиком лежит кривая L. Определим условия, при которых рассматриваемый криволинейный интеграл зависит не от формы кривой L, а только от расположения точек M и N.
Проведем две произвольные кривые MPN и MQN, лежащие в области D и соединяющие точки M и N (рис.1).
Q
• М • N Рис. 1.
P
Предположим, что , то есть
Тогда , где L – замкнутый контур, состав-ленный из кривых MPN и NQM (следовательно, его можно считать произвольным). Таким образом, условие независимости криволинейного интеграла 2-го рода от пути интегриро-вания равносильно условию, что такой интеграл по любому замкнутому контуру равен нулю.
Билет №34. Поверхностный интеграл первого род(по площади поверхности).Приложения(масса материальной поверхности, координаты центра тяжести, моменты, площадь искривленной поверхности).
Рассмотрим незамкнутую поверхность S, ограниченную контуром L, и разобьем ее какими-либо кривыми на части S1, S2,…, Sn. Выберем в каждой части точку Mi и спроектируем эту часть на касательную плоскость к поверхности, проходящую через эту точку. Получим в проек-ции плоскую фигуру с площадью Ti. Назовем ρ наибольшее расстояние между двумя точками любой части поверхности S.
Определение 12.1. Назовем площадью S поверхностипредел суммы площадей Ti при
:
. (12.1)
Поверхностный интеграл первого рода.
Рассмотрим некоторую поверхность S, ограниченную контуром L, и разобьем ее на части S1, S2,…, Sп (при этом площадь каждой части тоже обозначим Sп). Пусть в каждой точке этой поверхности задано значение функции f(x, y, z). Выберем в каждой части Si точку Mi (xi, yi, zi) и составим интегральную сумму
. (12.2)
Определение 12.2. Если существует конечный предел при интегральной суммы (12.2), не зависящий от способа разбиения поверхности на части и выбора точек Mi, то он называется поверхностным интегралом первого рода от функ-ции f(M) = f(x, y, z) по поверхности S и обозначается
. (12.3)
Замечание. Поверхностный интеграл 1-го рода обладает обычными свойствами интегралов (линейность, суммирование интегралов от данной функции по отдельным частям рассматриваемой поверхности и т.д.).
Геометрический и физический смысл поверхностного интеграла 1-го рода.
Если подынтегральная функция f(M) ≡ 1, то из определения 12.2 следует, что равен площади рассматриваемой поверхности S.
Если же считать, что f(M) задает плотность в точке М поверхности S, то масса этой поверхности равна
. (12.4)
Приложение поверхностного интеграла 1-го рода.
1. Площадь криволинейной поверхности, уравнение которой z = f(x, y), можно найти в виде:
(14.21)
(Ω – проекция S на плоскость Оху).
2. Масса поверхности
(14.22)
3. Моменты:
- (14.23)
- статические моменты поверхности относительно координатных плоскостей Oxy, Oxz, Oyz;
- (14.24)
- моменты инерции поверхности относительно координатных осей;
- (14.25)
- моменты инерции поверхности относительно координатных плоскостей;
- (14.26)
- момент инерции поверхности относительно начала координат.
4. Координаты центра масс поверхности:
. (14.27)
Билет №35. Вычисление поверхностного интеграла 1-го рода(сведение его к кратному).
Ограничимся случаем, когда поверхность S задается явным образом, то есть уравне-нием вида z = φ(x, y). При этом из определения площади поверхности следует, что
Si = , где Δσi – площадь проекции Si на плоскость Оху, а γi – угол между осью Oz и нормалью к поверхности S в точке Mi. Известно, что
,
где (xi, yi, zi) – координаты точки Mi. Cледовательно,
.
Подставляя это выражение в формулу (12.2), получим, что
,
где суммирование справа проводится по области Ω плоскости Оху, являющейся проекцией на эту плоскость поверхности S (рис.1).
z
S: z=φ(x,y)
Si L
O
y
Δσi Ω
x
Рис. 1.
При этом в правой части получена интегральная сумма для функции двух переменных по плоской области, которая в пределе при дает двойной интеграл Таким образом, получена формула, позволяющая свести вычисление поверхностного интеграла 1-го рода к вычислению двойного интеграла:
(12.5)
Замечание. Уточним еще раз, что в левой части формулы (12.5) стоит поверхностный интеграл, а в правой – двойной.
Билет № 36. Поверхностный интеграл второго рода. Поток векторного поля. Связь между поверхностными интегралами первого и второго рода.
Поток векторного поля.
Рассмотрим векторное поле А(М), определенное в пространственной области G, ориентированную гладкую поверхность S G и поле единичных нормалей п(М) на выбранной стороне поверхности S.
Определение 13.3. Поверхностный интеграл 1-го рода
, (13.1)
где An – скалярное произведение соответствующих векторов, а Ап – проекция вектора А на направление нормали, называется потоком векторного поля А(М) через выбранную сторону поверхности S.
Замечание 1. Если выбрать другую сторону поверхности, то нормаль, а, следова-тельно, и поток изменят знак.
Замечание 2. Если вектор А задает скорость течения жидкости в данной точке, то интеграл (13.1) определяет количество жидкости, протекающей в единицу времени через поверхность S в положительном направлении (отсюда общий термин «поток»).