Взаимосвязь между работой гребного винта и двигателем
Двигатель, работающий на винт, не является независимым: его мощность может изменяться только по винтовой характеристике Nе(n), которая определяет для него величину противодействующего момента. Мощность на валу двигателя Nе, обеспечивающую мощность Nр потребляемую винтом:
Nе = Nр/ ηв ηп = 2πρn3D5/ ηв ηп,
где ηв, ηп - КПД валопровода и передачи.
При заданных буксировочном сопротивлении и пропульсивном коэффициенте скорость судна v зависит от частоты вращения винта n. Можно считать, что v меняется пропорционально n, т.е. относительная поступь λр = const. Так как в этом случае также является постоянной величиной, можно записать, что Nе = Сn3, где С - постоянный коэффициент.
Из изложенного следует, что с изменением буксировочного сопротивления винтовая характеристика меняется. При увеличении сопротивления винтовые характеристики будут резко возрастать, так как уменьшение относительной поступи винта λр приведет к росту коэффициента момента и, следовательно, коэффициента С. Наиболее крутую винтовую характеристику судно будет иметь на швартовом режиме. При снижении сопротивления винтовые характеристики
вследствие увеличения λр и уменьшениястановятся более пологи ми. Наиболее пологую винтовую характеристику судно имеет при плавании в балласте. Как видим, в процессе эксплуатации судна его винтовые характеристики изменяются в широких пределах.
Рис.120. Взаимодействие гребного винта с двигателем
внутреннего сгорания
Для оценки связи между винтом и двигателем, помимо винтовых характеристик, необходимо иметь характеристики двигателя, которые получают при стендовых испытаниях и представляют в координатах Nе - n виде кривых, определяющих поле возможных сочетаний Nе и n. Рассмотрим характеристики наиболее распространенного на промысловых судах двигателя внутреннего сгорания. Работа двигателя данного типа характеризуется следующими кривыми (рис.120): кривая 1 устанавливает минимально устойчивую частоту вращения двигателя; кривая 2, называемая верхней ограничительной характеристикой, определяет зависимость Nе от n при постоянном положении аппаратуры подачи топлива, соответствующем получению номинальной мощности Nе.н при номинальной частоте вращения nн; кривая 3, именуемая регуляторной характеристикой, показывает частоту вращения двигателя при снижении нагрузки; кривая 4 является характеристикой холостого хода. Верхняя ограничительная характеристика является линией постоянного номинального крутящего
момента М кр.н, определяющей верхний предел длительной механической напряженности деталей двигателей.
Чтобы установить режимы совместной работы винта и двигателя, необходимо наложить винтовые характеристики на характеристики двигателя (рис.120). Если винтовая характеристика для расчетного режима плавания (кривая I) проходит через точку Н с координатами Nе.н и nн, то гребной винт соответствует двигателю. С ростом сопротивления из-за увеличения осадки судна, обрастания корпуса, волнения и тому подобного изменяется винтовая характеристика (кривая II), поэтому при нормальной эксплуатации двигателя, не допускающей его загрузку выше верхней ограничительной характеристики, взаимосвязь между винтом и двигателем будет наблюдаться в точке Т. В рассматриваемом случае винт становится гидродинамически «тяжелым». При тяжелом винте частота вращения nт двигателя меньше номинальной. С уменьшением сопротивления судна винт оказывается гидродинамически «легким». Винтовая характеристика (кривая III), построенная для этого варианта, пересечет регуляторную характеристику двигателя в точке Л, которой соответствует частота вращения nл, равная или несколько больше номинальной. Как видно из рис.120, всякое несоответствие винта двигателю связано с уменьшением располагаемой мощности двигателя и приводит к снижению скорости судна. Согласованность винта и двигателя окончательно проверяется при натурных (скоростных) испытаниях судна. Практически следует считать, что винт согласован с двигателем, если двигатель при работе на винт развивает номинальную мощность при частоте вращения, которая отличается от номинальной не более чем на 1 3%. Для согласования винта с двигателем корректируется его шаговое отношение: для «легкого» винта - увеличивается, а для «тяжелого» - уменьшается Н/D. Обычно гребные винты проектируют несколько облегченными по сравнению с требуемыми для идеальных условий эксплуатации (при этом имеют в виду, что по мере обрастания корпуса и увеличения сопротивления в реальных эксплуатационных условиях винт становится «тяжелее» и более соответствует главному двигателю).
В связи с тем, что принятый шаг винта отвечает только определенному режиму эксплуатации судна, на судах, которые часто меняют режим хода (промысловые суда, буксиры, паромы), вместо винтов фиксированного шага (ВФШ) применяют винты регулируемого шага (ВРШ).
Винты регулируемого шага
Для промысловых судов в эксплуатационных условиях характерны частые изменения буксировочного сопротивления, скорости и осадки при применении орудий лова, подъеме улова на борт, приеме и расходовании топлива и воды и других операциях. В этих изменяющихся условиях плавания ВФШ не позволяют снимать с двигателя полную мощность, что приводит к снижению скорости траления и свободного хода. Кроме того, на добывающих судах с ВФШ за одни сутки промысловой работы приходится десятки раз реверсировать двигатель, в результате чего резко снижается срок его службы. При дрифтерном и ярусном лове, подъеме улова и т.п. судно должно двигаться с малой скоростью, однако на судах с ВРШ это практически невозможно, так как минимально устойчивая частота вращения двигателя довольна велика. Поэтому приходится с интервалом в несколько минут запускать и останавливать двигатель. Такая работа двигателя вызывает ускоренный износ ее движущихся частей, т.е. уменьшает моторесурс двигателя.
Рис.121. Принципиальная схема ВРШ
1– лопасть; 2 – ступица; 3 – ползун; 4 – штанга; 5 – гребной вал;
6 – поршень; 7 – цилиндр
Винты регулируемого шага (ВРШ), лопасти которых специальным механизмом поворачиваются относительно осей, перпендикулярных оси вала, не имеют большинства недостатков, присущих ВФШ. Путем разворота лопасти (изменив шаговое отношение), всегда можно привести винт в соответствие с двигателем; без изменения направления вращения двигателя осуществить реверс судна и полу-
чить самые малые, и даже нулевую скорости судна при любой частоте вращения винта.
ВРШ (рис.121) состоит из ступицы, поворотных лопастей, механизма поворота лопастей, расположенного в ступице, механизма изменения шага (МИШ) и привода механизма поворота лопастей, располагаемого в валопроводе. Управление ВРШ осуществляется с местного поста и дистанционно. Пост дистанционного управления ВРШ устанавливается в ходовой рубке.
Механизм поворота лопастей управляется механизмом изменения шага. Наиболее распространенные механизмы поворота лопастей показаны на рис.122. На морских судах применяются обычно механизмы двух последних типов, как наиболее надежные. В механизме кулисного типа (рис.122, в) с поступательно движущейся штангой МИШ связан ползун, по направляющим которого перемещается сухарь. В сухарь вставлен эксцентрично закрепленный на лопасти палец. При поступательном движении штанги ползун передвигает палец и разворачивает лопасть. В механизме шатунного типа (рис.122, г) движение штанги передается шатуну, который поворачивает лопасть.
Рис.122. Механизм поворота лопастей: а – шестеренчатый; б – винтовой; в – кулисный; г - шатунный
Механизмы изменения шага по типу привода могут ручными, механическими, гидравлическими, электромеханическими и электрогидравлическими. Ручные и механические приводы применяются на винтах небольших размеров. Большинство ВРШ имеют гидравлические приводы, так как они обладают простотой, высокой надежно-
стью, малыми габаритами и развивают большие усилия. Механизм изменения шага винта размещают внутри ступицы, внутри валопровода и вне валопровода и винта. На промысловых судах МИШ устанавливается, как правило, в валопроводе, реже в ступице. На рис.49 приведена схема ВРШ с МИШ, расположенным в валопроводе. Штанга, поворачивающая лопасть, проходит через полый гребной вал. Кормовой конец штанги связан с ползуном, носовой – с поршнем, который под давлением рабочей жидкости, подаваемой в одну из полостей цилиндра, передает через штангу поступательное движение ползуну. При большой длине штанги и значительных деформациях валопровода может возникнуть опасность несрабатывания механизма поворота лопастей и аварии МИШ. Этот недостаток устраняют, размещая МИШ в ступице несколько больших размеров или в кормовом подзоре судна.
ВРШ обладают следующими преимуществами по сравнению с ВФШ:
- обеспечивают полную мощность двигателя при широком диапазоне изменения скоростей, что важно при движении судна во льдах, при различных водоизмещениях, при тралении, при буксировке других судов и т.п.;
- обеспечивают любое значение скорости от наибольшего переднего до наибольшего заднего хода, без реверсирования двигателя и изменения направления и частоты вращения гребного винта;
- реализуют экономический ход судна по заданной оптимальной программе, обеспечивающей наилучшую комбинацию шага и частоты вращения.
Помимо перечисленных, ВРШ позволяют получить и другие менее принципиальные, но важные преимущества по сравнению с ВФШ, облегчающие управление судном с мостика. К ним относятся:
- существенное сокращение времени и расстояния, проходимого судном при экстренной остановке (в 1,5 раза меньше выбег) и реверсе;
- обеспечение только дистанционного управления с мостика;
- применение повышенного уровня автоматизации управления системой судно - двигатель - ВРШ;
- повышение маневренных качеств судна, в частности облегчение швартовок, исключение рывков при буксировке и т.п.;
- облегчение пуска двигателей, который осуществляется при положении лопастей ВРШ в нулевом шаге; при этом уменьшается число пусков и увеличивается моторесурс двигателя;
- возможность судна, оборудованного ВРШ, продолжительное время стоять на месте в ожидании лоцмана, для ориентации в обстановке, не останавливая вращения гребных винтов и прогревая двигатели; это обеспечивает установкой шага лопастей в нулевое положение;
- возможность замена съемных лопастей, не выводя судно из эксплуатации.
К недостаткам ВРШ относятся следующие:
- КПД ВРШ на расчетном режиме за счет повышение диаметра ступицы ниже КПД ВФШ на 1 2%;
- масса ВРШ существенно превышает массу ВФШ;
- сложность конструкции и дороговизна.
Следует отметить, что повышенная стоимость ВРШ окупается за два - три года эксплуатации судна за счет основных преимуществ ВРШ.