Анализ полученных решений

Формулы (4.70)…(4.72) однотипны и могут быть описаны одним уравнением

Анализ полученных решений - student2.ru . (4.76)

При Анализ полученных решений - student2.ru имеем расчет напряжений на поверхности и в центре, а при Анализ полученных решений - student2.ru — перепада температур. После определения максимальных времен можно найти соответствующие температуры при этих числах Фурье с учетом двух членов ряда.

Подставляя Анализ полученных решений - student2.ru в уравнение (4.60), получим температуру поверхности

Анализ полученных решений - student2.ru , (4.77)

в (4.61) — температуру центра

Анализ полученных решений - student2.ru , (4.78)

в соотношение (4.62) — среднемассовую

Анализ полученных решений - student2.ru , (4.79)

и в (4.65) перепад температур

Анализ полученных решений - student2.ru . (4.80)

Наибольшую и основную трудность при практических расчётах по уравнениям (4.56)…(4.80) представляет определение по соотношению (4.69) бесчисленного множества корней. В работе [3] приведена общая приближенная формула расчета первого корня для тел простой формы

Анализ полученных решений - student2.ru , (4.81)

где Анализ полученных решений - student2.ru ; Анализ полученных решений - student2.ru -коэффициент термической массивности;

Анализ полученных решений - student2.ru ; Анализ полученных решений - student2.ru ; Анализ полученных решений - student2.ru — коэффициент геометрической формы, равный 1 ­ – для пластины, 2 ­ – цилиндра и 3 ­ – шара. При малых r число Анализ полученных решений - student2.ru .

Для определения приближенных значений остальных корней следует различать два характерных случая нагрева – при больших и малых числах Био [14].

При малых числах Био (Bi < 3)

Анализ полученных решений - student2.ru , (4.82)

где Анализ полученных решений - student2.ru — корни уравнения (14) при Анализ полученных решений - student2.ru , т.е. нули функции Анализ полученных решений - student2.ru : Анализ полученных решений - student2.ru ; Анализ полученных решений - student2.ru ; Анализ полученных решений - student2.ru и т.д. [14].

При больших числах Био ( Анализ полученных решений - student2.ru )

Анализ полученных решений - student2.ru , (4.83)

где Анализ полученных решений - student2.ru ;

Анализ полученных решений - student2.ru — корни уравнения (4.69) при Анализ полученных решений - student2.ru , т.е. нули функции Анализ полученных решений - student2.ru :

Анализ полученных решений - student2.ru ; Анализ полученных решений - student2.ru и т.д.

Следует отметить, что при числах Био Анализ полученных решений - student2.ru первый корень Анализ полученных решений - student2.ru следует вычислять не по уравнению (4.81), а по (4.83).

Получим упрощенные расчетные соотношения в двух предельных случаях.

4.2.1. Асимптотика при малых числах Био.

Первый корень уравнения (4.69) вычисляем по соотношению (4.81) при Анализ полученных решений - student2.ru и Анализ полученных решений - student2.ru , а второй — по (4.82). Тогда отношение собственных чисел

Анализ полученных решений - student2.ru . (4.84)

Разность квадратов корней Анализ полученных решений - student2.ru Анализ полученных решений - student2.ru .

Первая амплитуда, входящая в уравнение (4.60) температуры поверхности

Анализ полученных решений - student2.ru . (4.85)

По аналогии вторая Анализ полученных решений - student2.ru и любая

Анализ полученных решений - student2.ru , (4.86)

где Анализ полученных решений - student2.ru — n-ый коэффициент термической массивности.

Интересно отметить, что в отличие от других амплитуд зависимость Анализ полученных решений - student2.ru от числа Био носит немонотонный характер, возрастает от нуля до максимального значения Анализ полученных решений - student2.ru при числе Анализ полученных решений - student2.ru , а затем уменьшается до нуля, оставаясь меньше Анализ полученных решений - student2.ru .

Введем отношение поверхностных амплитуд

Анализ полученных решений - student2.ru , (4.87)

где Анализ полученных решений - student2.ru .

При определении тепловой амплитуды Анализ полученных решений - student2.ru воспользуемся разложением функции Бесселя при малых аргументах Анализ полученных решений - student2.ru , где Анализ полученных решений - student2.ru . Тогда

Анализ полученных решений - student2.ru Анализ полученных решений - student2.ru , (4.88)

где Анализ полученных решений - student2.ru .

Согласно [126] вторая амплитуда

Анализ полученных решений - student2.ru , (4.89)

где Анализ полученных решений - student2.ru ; при больших аргументах Анализ полученных решений - student2.ru .

Анализ полученных решений - student2.ru , (4.90)

где Анализ полученных решений - student2.ru .

Для среднемассовой температуры:

Анализ полученных решений - student2.ru и Анализ полученных решений - student2.ru . (4.91)

Для перепада температур по уравнению (4.65)

Анализ полученных решений - student2.ru , (4.92)

Анализ полученных решений - student2.ru .

Для термических напряжений в центре цилиндра по (4.58)

Анализ полученных решений - student2.ru . (4.93)

Анализ полученных решений - student2.ru .

Для термонапряжений на поверхности

Анализ полученных решений - student2.ru , (4.94)

Анализ полученных решений - student2.ru .

С целью проверки амплитуды Анализ полученных решений - student2.ru можно использовать равенство Анализ полученных решений - student2.ru .

Выражения для расчета максимальных времен по уравнению (4.76) также упростятся.

Коэффициент поверхности Анализ полученных решений - student2.ru

Анализ полученных решений - student2.ru ,

для перепада температур Анализ полученных решений - student2.ru

Анализ полученных решений - student2.ru (4.95)

и центра Анализ полученных решений - student2.ru

Анализ полученных решений - student2.ru

Результаты расчетов при Анализ полученных решений - student2.ru максимальных времен Анализ полученных решений - student2.ru по формуле (4.76) и соответствующих этим временам максимальных термических напряжений на поверхности по уравнению (4.74), Анализ полученных решений - student2.ru по (4.73) и термонапряжений в центре цилиндра по (4.75) приведены в табл. 4.1. Там же представлены данные при Анализ полученных решений - student2.ru .

Таблица 4.1. Коэффициенты Анализ полученных решений - student2.ru , максимальные времена Анализ полученных решений - student2.ru , Анализ полученных решений - student2.ru , Анализ полученных решений - student2.ru и Анализ полученных решений - student2.ru при Анализ полученных решений - student2.ru и Анализ полученных решений - student2.ru .

j Число Био Анализ полученных решений - student2.ru Анализ полученных решений - student2.ru
    Анализ полученных решений - student2.ru Анализ полученных решений - student2.ru Анализ полученных решений - student2.ru Анализ полученных решений - student2.ru Анализ полученных решений - student2.ru Анализ полученных решений - student2.ru
  0,197687 0,107603 0,159055
  0,101219 0,152036 –0,306981 0,28556 0,05074 –0,96792
  0,069518 0,176974 –0,152570 0,14446 0,07837 –0,46734
               

Анализ уравнений (4.76) и (4.95) позволяет сделать вывод о том, что максимум величин наступает в последовательности Анализ полученных решений - student2.ru и с ростом числа Био эти времена уменьшаются.

Для оценки различия максимальных времен при Анализ полученных решений - student2.ru составим их разности:

Анализ полученных решений - student2.ru ;

Анализ полученных решений - student2.ru

и Анализ полученных решений - student2.ru . (4.96)

Из (4.76) и табл. 1 следует, что с ростом числа Био различия максимальных времен увеличиваются, вплоть до Анализ полученных решений - student2.ru – см. уравнение (4.105).

На практике технологов интересует вопрос — насколько термические напряжения на поверхности тела больше, чем в его середине. Обозначим их отношение Анализ полученных решений - student2.ru . Наиболее просто Анализ полученных решений - student2.ru можно найти в стадии регулярного режима нагрева (РРН), который наступает при числах Фурье Анализ полученных решений - student2.ru и когда вместо бесконечных сумм в уравнениях (4.57)…(4.65) можно ограничиться одним членом ряда. Тогда, деля уравнение (4.57) на (4.58) и учитывая упрощенные соотношения (4.93) и (4.94), получим

Анализ полученных решений - student2.ru (4.97)

При числе Анализ полученных решений - student2.ru Анализ полученных решений - student2.ru .

Таким образом, в отличие от процесса нагрева плоских тел, когда при Анализ полученных решений - student2.ru Анализ полученных решений - student2.ru , термические напряжения на поверхности тела в 2 раза больше термонапряжений в центре, при нагреве цилиндрических тел напряжения в центральных точках тела примерно равны или чуть больше, чем на поверхности.

4.2.2. Асимптотика при больших числах Био.

Теперь корни Анализ полученных решений - student2.ru , в том числе и первый, находим по уравнению (4.83). Тогда отношение

Анализ полученных решений - student2.ru . (4.98)

В данном случае отношение корней совпадает с максимально возможным, которое получается в предельном случае при Анализ полученных решений - student2.ru : Анализ полученных решений - student2.ru .

Разность квадратов корней

Анализ полученных решений - student2.ru . (4.99)

Амплитуды:

Анализ полученных решений - student2.ru ;

Анализ полученных решений - student2.ru ,

где Анализ полученных решений - student2.ru .

В работе [13] было получено, что тепловая амплитуда при больших числах Био для плоских тел пропорциональна Анализ полученных решений - student2.ru . Предполагая такую же зависимость для любых тел, получим

Анализ полученных решений - student2.ru ; (4.100)

Анализ полученных решений - student2.ru ,

где Анализ полученных решений - student2.ru и Анализ полученных решений - student2.ru — амплитуды при Анализ полученных решений - student2.ru . Осуществляя в уравнении (4.89) предельный переход при Анализ полученных решений - student2.ru , т.е. полагая в нем Анализ полученных решений - student2.ru и Анализ полученных решений - student2.ru , будем иметь

Анализ полученных решений - student2.ru ; Анализ полученных решений - student2.ru .

Расчет амплитуды по уравнению (4.100) при Анализ полученных решений - student2.ru дает Анализ полученных решений - student2.ru с погрешностью 0,3% по сравнению с точным значением Анализ полученных решений - student2.ru [126].

Амплитуды:

Анализ полученных решений - student2.ru ; Анализ полученных решений - student2.ru ,

где Анализ полученных решений - student2.ru ; Анализ полученных решений - student2.ru .

Анализ полученных решений - student2.ru ; Анализ полученных решений - student2.ru ; Анализ полученных решений - student2.ru ; Анализ полученных решений - student2.ru .

Анализ полученных решений - student2.ru ; Анализ полученных решений - student2.ru ; Анализ полученных решений - student2.ru ; Анализ полученных решений - student2.ru .

Анализ полученных решений - student2.ru ; Анализ полученных решений - student2.ru ; Анализ полученных решений - student2.ru ; Анализ полученных решений - student2.ru .

Теперь коэффициенты для расчета максимальных времен примут вид:

Анализ полученных решений - student2.ru ; (4.101)

Анализ полученных решений - student2.ru ; (4.102)

Анализ полученных решений - student2.ru . (4.103)

В предельном случае при Анализ полученных решений - student2.ru :

Анализ полученных решений - student2.ru ; Анализ полученных решений - student2.ru ;

Анализ полученных решений - student2.ru (4.104)

Так как Анализ полученных решений - student2.ru лишено физического смысла, следует взять Анализ полученных решений - student2.ru .

Тогда наименьшие максимальные времена согласно (4.76) при Анализ полученных решений - student2.ru будут:

Анализ полученных решений - student2.ru , Анализ полученных решений - student2.ru

и Анализ полученных решений - student2.ru . (4.105)

Подставляя (4.105) в уравнение (4.58), получим максимально возможное термическое напряжение в центре цилиндра

Анализ полученных решений - student2.ru . (4.106)

Величины Анализ полученных решений - student2.ru , вычисленные по уравнению (4.104), времена Анализ полученных решений - student2.ru согласно (4.105) и максимальные термические напряжения Анализ полученных решений - student2.ru приведены в табл.4.1.

Отношение термонапряжений при Анализ полученных решений - student2.ru Анализ полученных решений - student2.ru .

Следует отметить, что если приближенно считать Анализ полученных решений - student2.ru , то из уравнения (4.64) будем иметь

Анализ полученных решений - student2.ru , (4.107)

где Анализ полученных решений - student2.ru .

Это соотношение при Анализ полученных решений - student2.ru и 2 полностью совпадает с формулами Н.Ю. Тайца [28] для максимальных термических напряжений

Анализ полученных решений - student2.ru . (4.108)

Из анализа уравнения (46) вытекает, что коэффициент Анализ полученных решений - student2.ru меняет знак по причине изменения знака амплитуды Анализ полученных решений - student2.ru , изменяющейся от Анализ полученных решений - student2.ru при малых числах Био до Анализ полученных решений - student2.ru . Из условия равенства нулю Анализ полученных решений - student2.ru можно получить граничное число Анализ полученных решений - student2.ru выше которого имеем случаи нагрева термически «массивного» тела. Таким образом, при числах Анализ полученных решений - student2.ru для определения времени Анализ полученных решений - student2.ru можно применять формулу (4.70) в которой Анализ полученных решений - student2.ru определяется по уравнению (4.101), а при Анализ полученных решений - student2.ru коэффициент Анализ полученных решений - student2.ru становится отрицательным и нельзя пользоваться формулой (4.70). Возникшую ситуацию можно объяснить следующим образом. Формулы (4.70)…(4.76) получены с учетом всего двух членов ряда. С ростом числа Био максимальное время Анализ полученных решений - student2.ru уменьшается, вплоть до 0 при Анализ полученных решений - student2.ru .

При очень малых числах Фурье Анализ полученных решений - student2.ru расчёт температур по уравнениям (4.56)…(4.65) затруднителен из-за необходимости учета большого количества членов ряда, ввиду его плохой сходимости. В этом случае для расчёта поверхностной темпе­ратуры можно использовать формулы, полученные методом операционного исчисления в работе [126]. Объединяя эти формулы в одно уравнение для простых тел, будем иметь:

Анализ полученных решений - student2.ru , (4.109)

где Анализ полученных решений - student2.ru ; Анализ полученных решений - student2.ru ;

Анализ полученных решений - student2.ru – модифицированное время, число Тихонова;

Анализ полученных решений - student2.ru ; Анализ полученных решений - student2.ru — дополнительный интеграл вероятностей;

Анализ полученных решений - student2.ru — функция ошибок Гаусса; Анализ полученных решений - student2.ru ;

Анализ полученных решений - student2.ru — фактор формы, см. уравнение (4.81).

Зная температуру поверхности и используя методику [13], можно найти среднемассовую температуру

Анализ полученных решений - student2.ru (4.110)

где Анализ полученных решений - student2.ru .

При числах Анализ полученных решений - student2.ru для шара или Анализ полученных решений - student2.ru для цилиндра коэффициент Анализ полученных решений - student2.ru и в расчетных соотношениях (4.109) и (4.110) следует раскрывать неопределенность типа Анализ полученных решений - student2.ru . Используя разложение функции Анализ полученных решений - student2.ru при малых аргументах, из уравнения (4.109) получим для температуры на поверхности:

Анализ полученных решений - student2.ru (4.111)

и для среднемассовой из (4.110)

Анализ полученных решений - student2.ru , (4.112)

где Анализ полученных решений - student2.ru и Анализ полученных решений - student2.ru для шара и Анализ полученных решений - student2.ru и Анализ полученных решений - student2.ru — для длинного цилиндра.

Таким образом, при малых временах процесса ( Анализ полученных решений - student2.ru ) вместо уравнения (4.60) будет (4.109), вместо (4.62)…(4.110), а температуру в центре тела на начальной стадии нагрева приближенно можно принять Анализ полученных решений - student2.ru .

С учетом сказанного уравнение (4.57) для расчета термических напряжений на поверхности примет вид

Анализ полученных решений - student2.ru . (4.113)

При Анализ полученных решений - student2.ru , после раскрытия неопределенности с помощью (56), получим

Анализ полученных решений - student2.ru . (4.114)

Дифференцируя уравнение (4.113) по времени и приравнивая производную нулю с учетом разложений можно получить формулу, анало-гично (4.70), для расчета времени наступления Анализ полученных решений - student2.ru максимального термического напряжения на поверхности. Ввиду сложности (4.113) и необходимости в дальнейшем решать трансцендентные уравнения, покажем ход расчета на более простом уравнении (4.114). Из соотношения Анализ полученных решений - student2.ru получим квадратное уравнение, решение которого имеет вид:

Анализ полученных решений - student2.ru , (4.115)

где Анализ полученных решений - student2.ru ; Анализ полученных решений - student2.ru ; Анализ полученных решений - student2.ru .

Расчет для цилиндра при Анализ полученных решений - student2.ru и Анализ полученных решений - student2.ru =1/2 дает Анализ полученных решений - student2.ru , что хорошо согласуется с ранее полученной при Анализ полученных решений - student2.ru по (4.70) величиной 0,1076 (см. табл. 4.1).

Иногда требуется определить расположение координаты Анализ полученных решений - student2.ru нейтрального слоя в котором термические напряжения меняют знак с Анализ полученных решений - student2.ru на Анализ полученных решений - student2.ru , т.е. в этой точке равны нулю. Наиболее просто это можно сделать в стадии РРН. Тогда согласно уравнению (1) Анализ полученных решений - student2.ru или Анализ полученных решений - student2.ru . Разрешая последнее выражение относительно Анализ полученных решений - student2.ru , с помощью разложения функции Анализ полученных решений - student2.ru — см. уравнение (4.88), получим при малых числах Био

Анализ полученных решений - student2.ru . (4.116)

и при больших числах Био

Анализ полученных решений - student2.ru . (4.117)

Таким образом, поскольку Анализ полученных решений - student2.ru нейтральные слои расположены ближе к поверхности, а само Анализ полученных решений - student2.ru колеблется в узких пределах — от 0,63 до 0,71.

Следует отметить, что при нагреве абсолютные, т.е. размерные термические напряжения Анализ полученных решений - student2.ru поменяют знаки за счет отрицательности Анализ полученных решений - student2.ru из-за Анализ полученных решений - student2.ru .

В заключение укажем, что все полученные решения описывают как процесс конвективного нагрева цилиндрических тел, так и их охлаждение.

Наши рекомендации