Метрические пространства
Первое свойство, которым мы наделим пространство сигналов, называют метрикой.
Метрическое пространство – это множество с подходящим образом определенным расстоянием между его элементами. Само это расстояние, как и способ его определения, называют метрикойи обозначают . Метрика должна представлять собой функционал, т.е. отображение любой пары элементов и множества на действительную ось, удовлетворяющее интуитивно понятным требованиям (аксиомам):
1) (равенство при ),
2) ,
3) (аксиома треугольника).
Следует отметить, что метрики можно задать разными способами и в результате для одних и тех же элементов получить разные пространства.
Примеры метрик:
1) ,
2) евклидова метрика,
3) евклидова метрика.
Линейные пространства
Усовершенствуем структуру пространства сигналов, наделив его простыми алгебраическими свойствами, присущими реальным сигналам, которые можно алгебраически складывать и умножать на числа.
ЛинейнымпространствомL над полем F называют множество элементов , называемых векторами, для которых заданы две операции –сложение элементов (векторов) и умножение векторов на элементы из поля F (называемые скалярами) . Не вдаваясь в математические детали, в дальнейшем, под полем скаляров будем понимать множества вещественных чисел R (случай действительного пространства L) или комплексных чисел С (случай комплексного пространства L). Эти операции должны удовлетворять системе аксиом линейного пространства.
1. Замкнутость операций сложения и умножения на скаляр:
,
.
2. Свойства сложения:
ассоциативность,
коммутативность.
3. Свойства умножения на скаляр:
ассоциативность,
дистрибутивность суммы векторов,
дистрибутивность суммы скаляров.
4. существование нулевого вектора.
5. существование проти-
воположного вектора.
Вектор, образованный суммированием нескольких векторов со скалярными коэффициентами
,
называют линейной комбинацией (многообразием). Легко видеть, что множество всех линейных комбинаций векторов при разных ai (не затрагивая ) также образует линейное пространство, называемое линейной оболочкой для векторов .
Множество векторов называют линейно независимыми, если равенство
возможно лишь при всех ai = 0. Например, на плоскости любые два неколлинеарные вектора (не лежащие на одной прямой) являются линейно независимыми.
Система линейно независимых и ненулевых векторов образует в пространстве L базис, если
.
Этот единственный набор скаляров {ai}, соответствующий конкретному вектору , называют егокоординатами(проекциями) по базису .
Благодаря введению базиса операции над векторами превращаются в операции над числами (координатами)
.
Если в линейном пространстве L можно отыскать n линейно независимых векторов, а любые n + 1 векторов зависимы, то n – размерностьпространства L (dim L = n).