Формула и ряд Тейлора. Биноминальный ряд
Рассмотрим многочлен -й степени
Его можно представить в виде суммы степеней , взятых с некоторыми коэффициентами. Продифференцируем его раз по переменной , а затем найдем значения многочлена и его производных в точке :
Таким образом, получаем, что
Полученное выражение называется формулой Маклорена для многочлена степени .
Рассуждая аналогично, можно разложить многочлен по степеням разности , где - любое число. В этом случае будем иметь:
Это выражение называется формулой Тейлора для многочлена в окрестности точки .
Пример
Задание. Разложить в ряд Тейлора функцию в точке .
Решение. Найдем производные:
Итак, , , . Значение функции в точке
Таким образом,
Ответ.
БИНОМИАЛЬНЫЙ РЯД - степенной ряд вида
где n - целое, а α - произвольное фиксированное число (вообще говоря, комплексное), z = x + iy - комплексное переменное, (αn) - биномиальные коэффициенты. Для целых α = m ≥ 0 Б. р. сводится к конечной сумме m + 1 слагаемых
называемой Ньютона биномом. Для остальных значений α Б. р. абсолютно сходится при |z| < 1 и расходится при |z| > 1. В граничных точках единичной окружности |z| = 1 Б. р. ведет себя следующим образом: 1) если Re α > 0, то он абсолютно сходится во всех точках окружности |z| = 1; 2) если Re α ≤ - 1, то он расходится во всех точках окружности |z| = 1; 3) если - 1 < Rе α ≤ 0, то Б. р. расходится в точке z = - 1 и условно сходится во всех остальных точках окружности |z| = 1. Во всех точках, в к-рых Б. р. сходится, он представляет главное значение функции (1 + z)α, равное 1 при z = 0. Б. р. является частным случаем гипергеометрического ряда.
Если z = x и α - действительные числа, причем α не есть целое неотрицательное число, то Б. р. ведет себя следующим образом: 1) если α > 0, то он абсолютно сходится при - 1 ≤ x ≤ 1 2) если α ≤ - 1, то Б. р. абсолютно сходится при - 1 < x < 1 и расходится при всех иных значениях х; 3) если - 1 < α ≤ 0, то Б. р. абсолютно сходится при - 1 < x < 1, условно сходится при х = 1 и расходится при х = - 1; при |х| > 1 Б. р. всегда расходится.
Теорема Эйлера. Правильные многогранники.
Выпуклый многогранник называется правильным, если его гранями являются равные правильные многоугольники, и в каждой вершине сходится одинаковое число граней.
Пусть дан топологически правильный многогранник, гранями которого являются n - угольники, и в каждой вершине сходится m ребер. Ясно, что n и m больше или равны трем. Обозначим, как и раньше, В - число вершин, Р - число ребер и Г - число граней этого многогранника. Тогда
nГ = 2P; Г = ; mB = 2P; В = .
По теореме Эйлера, В - Р + Г = 2 и, следовательно,
Откуда Р = .
Из полученного равенства, в частности, следует, что должно выполняться неравенство 2n + 2m – nm > 0, которое эквивалентно неравенству (n – 2)(m – 2) < 4.
Теорема Эйлера
Для любого выпуклого многогранника справедливо соотношение Г+В-Р=2, где Г – число граней, В – число вершин и Р – число ребер данного многогранника.
Доказательство теоремы, связанное с нахождением суммы плоских углов выпуклого многогранника:
Обозначим эту сумму, как . Напомним, что плоскими углами многогранника являются внутренние плоские углы его граней.
Например, найдем для таких многогранников:
а) тетраэдр имеет 4 грани – все треугольники. Таким образом, ;
б) куб имеет 6 граней – все квадраты. Таким образом, ;
в) возьмем теперь произвольную пятиугольную призму. У нее две грани – пятиугольники и пять граней – параллелограммы. Сумма углов выпуклого пятиугольника равна . Сумма углов параллелограмма равна . Таким образом, .
Итак, для нахождения мы вычисляли сначала сумму углов, принадлежащих каждой грани. Воспользуемся этим приемом и в общем случае.
Введем следующие обозначения: , , …, - число сторон в 1, 2, 3-й и т.д. последней грани многогранника.
Тогда
Далее найдем общее число сторон всех граней многогранника. Оно равно . Так как каждое ребро многогранника принадлежит двум граням, имеем: .
Таким образом, получаем:
(1)
Сосчитаем теперь другим способом. Для этого будем менять форму многогранника таким образом, что бы у него не менялось число Г, В и Р. При этом может измениться каждый плоский угол в отдельности, но число останется прежним. Выберем такое преобразование многогранника: примем одну из его граней за основание, расположим его горизонтально и «растянем» для того, чтобы на него можно было спроектировать другие грани многогранника. Например, на рисунке 1а показано, к чему мы придем, в случае тетраэдра, а на рисунке 1б – в случае куба
Заметим, что спроектированный многогранник представляет слившиеся две наложенные друг на друга пластины с общим контуром, из которых верхняя разбита на (Г-1) многоугольник, а нижняя на грани не делится. Обозначим число сторон внешнего окаймляющего многоугольника через r. Теперь найдем спроектированного многоугольника. состоит из следующих трех сумм:
1) Сумма углов нижней грани, у которой r сторон, равна .
2) Сумма углов верхней пластины, вершинами которых являются вершины нижней грани, тоже равна .
3) Сумма «внутренних» углов верхней пластины равна , так как верхняя пластина имеет внутренних вершин и все углы группируются около них.
Итак, (2)
Таким образом, сравнивая выражения (1) и (2), получаем: Г+В-Р=2, что и требовалось доказать.