Метаматериалы и их применение
Метаматериалы.
Как было сказано выше, резкий перелом наступил в начале 21 века, когда в работах Дэвида Смита из Калифорнийского университета в Сан-Диего [4,5] было сообщено о создании композитного материала, который мог характеризоваться отрицательными значениями и , и, тем самым, отрицательным значением . Этот материал состоял из многих медных стерженьков и колечек (рис. 4, рис. 5), расположенных в строгом геометрическом порядке. Стерженьки, по сути дела, являлись антеннами, которые реагировали на электрическое поле, а колечки были антеннами, которые реагировали на магнитное поле. Размеры этих элементов и расстояние между ними были менее длины волны, а вся система в целом обладала отрицательными эффективными значениями и .
Рис. 4. Метаматериал группы из Сан-Диего 2000г.
Рис. 5. Метаматериал группы из Сан-Диего 2001г.
В работе [5] был изложен результат прямого измерения угла преломления для призмы (рис. 6), приготовленной из данного композита, и этот эксперимент показал полную справедливость для данного материала соотношения (2) при отрицательном .
Рис. 6. Экспериментальная установка
Мы говорим метаматериал, но все же что же это такое. Метаматериалы – это композитные материалы, свойства которых обусловлены не столько индивидуальными физическими свойствами их компонентов, сколько микроструктурой. Термин «метаматериалы» особенно часто применяют по отношению к тем композитам, которые демонстрируют свойства, нехарактерные для объектов, встречающихся в природе.
Суперлинзы
Веселаго использовал построение хода лучей, чтобы предсказать, что брус из материала с отрицательным показателем преломления должен действовать как линза с уникальными свойствами. Большинство из нас знакомо с линзами из материалов с положительным преломлением — в камерах, лупах, микроскопах и телескопах. Они имеют фокусное расстояние, и место, где формируется изображение, зависит от сочетания фокусного расстояния и расстояния между объектом и линзой. Изображения обычно отличаются по размеру от объекта, и линзы работают лучше всего для объектов, лежащих на оси, проходящей через линзу. Линза Веселаго работает совершенно иначе, чем обычные: ее работа намного проще, она действует только на объекты, расположенные рядом с ней, и переносит все оптическое поле с одной стороны линзы на другую.
Линза Веселаго столь необычна, что пришлось задаться вопросом: насколько совершенно она может работать? И в частности, каково может быть предельное разрешение линзы Веселаго? Оптические элементы с положительным показателем преломления ограничены дифракционным пределом — они могут разрешать детали, размер которых равен или больше длины волны света, отраженного от объекта.
Дифракция накладывает окончательный предел на все системы создания изображения, наподобие наименьшего объекта, который можно рассмотреть в микроскоп, или наименьшего расстояния между двумя звездами, которое может разрешить телескоп.
Дифракция определяет также наименьшую деталь, которую можно создать в процессе оптической литографии при производстве микрочипов (микросхем). Подобным же образом дифракция ограничивает количество информации, которую можно сохранить или прочитать на оптическом цифровом видеодиске (DVD). Способ обойти дифракционный предел мог бы решительным образом изменить технологии, позволив оптической литографии проникнуть в диапазон наноразмеров и, возможно, в сотни раз увеличить количество данных, сохраняемых на оптических дисках.