Эпюры внутренних усилий при кручении
Эпюры внутренних усилий при растяжении-сжатии
Растяжением или сжатием называется такой простой вид сопротивления, при котором внешние силы приложены вдоль продольной оси бруса, а в поперечном сечении его возникает только нормальная сила.
Рассмотрим расчетную схему бруса постоянного поперечного сечения с заданной внешней сосредоточенной нагрузкой Р и распределенной q, (рис.1).
Пусть . Прежде всего определим опорную реакцию R, задавшись ее направлением вдоль оси х.
Брус имеет 2 участка и .
В пределах первого участка мысленно рассечем брус на 2 части нормальным сечением и рассмотрим равновесие, допустим левой части, введя следующую координату х1, рис.1 б:
Следовательно, в пределах первого участка брус претерпевает сжатие постоянной нормальной силой.
Аналогично поступим со вторым участком. Мысленно рассечем его сечением 2-2, и рассмотрим равновесие левой части (рис.1 в).Установим предварительно границы изменения х2:
Подставляя граничные значения параметра х2, получим:
Таким образом, в пределах второго участка брус растянут и нормальная сила изменяется по линейному закону.
Аналогичный результат получается и при рассмотрении правой отсеченной части (рис.1 г):
На основе полученных данных строится эпюра нормальных сил в виде графика распределения нормальной силы по длине бруса (рис.1 д). Характерно, что скачки на эпюре обусловлены наличием в соответствующих сечениях сосредоточенных сил R и Р.
Эпюры внутренних усилий при кручении
Кручением называется простой вид сопротивления, при котором к брусу (валу) прикладываются внешние пары сил в плоскостях, совпадающих с поперечным сечением вала, а в последних возникает только внутренний крутящий момент.
Рассмотрим расчетную схему вала, нагруженного двумя сосредоточенными моментами М и 2М и распределенными по длине: m, рис.2.
Методика построения эпюры аналогична только что рассмотренной методике при растяжении-сжатии.
В исходных сечениях № 1,2 и 3 задаются положительными значениями внутренних крутящих моментов М1, М2, М3. Пусть М=ml.
Для первого участка (рис.2 б):
Для второго участка (рис.2 в):
Для третьего участка (рис.2 г):
Границы измерения параметра х3 в следующей системе координат:
Тогда:
Отмеченные значения ординат откладываются на эпюре внутренних крутящих моментов (рис.2 д).
4 Эпюры внутренних усилий при прямом изгибе.
Ключевые слова: поперечная сила. Внутренний изгибающий момент.
Прямым изгибом называется такой вид простого сопротивления, когда внешние силы приложены перпендикулярно продольной оси бруса (балки) и расположены в одной из главных плоскостей в соответствие с конфигурацией поперечного сечения балки.
Как известно, при прямом изгибе в поперечном сечении возникают два вида внутренних усилий: поперечная сила и внутренний изгибающий момент.
Рассмотрим пример расчетной схемы консольной балки с сосредоточенной силой Р, рис. 1, а, но…
Предварительно рекомендую Вам вспомнить из раздела "Статика" теоретической механики методы расчета реакций в связях на примерах тестов, приведенных в ПРИЛОЖЕНИИ по разделом Т-2.
Прежде всего вычислим реакции в связи на базе уравнений равновесия:
После мысленного рассечения балки нормальным сечением 1-1 рассмотрим равновесие левой отсеченной части (рис.1, б), получим:
Таким образом, на первом участке поперечная сила отрицательная и постоянная, а внутренний изгибающий момент изменяется по линейному закону.
Для правой отсеченной части при рассмотрении ее равновесия результат аналогичен рис.1, в. А именно:
На основании полученных значений строятся эпюры поперечных сил (рис.1, г) и внутренних изгибающих моментов (рис.1, д).
Как следует из построенных эпюр , а в сечении жесткой связи. Именно это сечение и является наиболее опасным в данной расчетной схеме.
Продифференцируем выражение внутреннего изгибающего момента по координате х:
Как видим, после дифференцирования получено выражение для поперечной силы. Случайность это или закономерность? - Закономерность.