Окислительно-восстановительных реакций

При составлении уравнений ОВР нужно учесть, что число электронов, отданных восстановителем, равно числу электронов, принятых окислителем.

В химии электрон обозначается окислительно-восстановительных реакций - student2.ru окислительно-восстановительных реакций - student2.ru его условный заряд принят за «-1» окислительно-восстановительных реакций - student2.ru Для подбора стехиометрических коэффициентов можно использовать несколько методов. К наиболее распространенным относятся метод электронного баланса и метод электронно-ионных уравнений (метод полуреакций).

Метод электронного баланса является наиболее универсальным методом и применим для любых окислительно-восстановительных процессов, протекающих в любых системах (растворы, расплавы, газы). В основе метода лежит принцип сравнения степеней окисления атомов в исходных веществах и в продуктах реакции с последующим составлением схемы электронного баланса.

Пример 2. Рассмотрим метод электронного баланса для уравнивания ОВ-реакции:

окислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ruокислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ru

Для расстановки коэффициентов выполняем следующие действия.

1. Определяем элементы, атомы которых изменяют степень окисления:

окислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ruокислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ru

2. Находим окислитель и восстановитель в данной ОВР, составляем схему перехода электронов от восстановителя к окислителю и пишем отдельно электронные уравнения процессов окисления и восстановления с учетом того, что количество атомов, входящих в соединение, должно сохраняться. Например, в окислительно-восстановительных реакций - student2.ru имеется два атома Cr, следовательно, в уравнении они должны присутствовать:

+6ē

окислительно-восстановительных реакций - student2.ru окислительно-восстановительных реакций - student2.ru окислительно-восстановительных реакций - student2.ru -2ē

окислительно-восстановительных реакций - student2.ru окислительно-восстановительных реакций - student2.ru окислительно-восстановительных реакций - student2.ru окислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ruокислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ru + окислительно-восстановительных реакций - student2.ru

окислитель восстановитель

2Cr+6 + 6ē = 2Cr+3 (а) - восстановление

S-2 - 2ē окислительно-восстановительных реакций - student2.ru = S0 (б) – окисление

3. Уравниваем число электронов в процессе окисления и восстановления (составляем электронный баланс). В приведенной схеме необходимо уравнение (б) умножить на 3, тогда будет принято и отдано по 6 электронов. После умножения уравнения складываются как обычные алгебраические:

окислительно-восстановительных реакций - student2.ru окислительно-восстановительных реакций - student2.ru 2Cr+6 + 6ē = 2Cr+3 1

+ S-2 - 2ē окислительно-восстановительных реакций - student2.ru = S0 3

 
  окислительно-восстановительных реакций - student2.ru

2Cr+6 +3S-2 = 2Cr+3 + 3 S0

4. Полученные коэффициенты называют основными. Они переносятся в молекулярную схему реакции и ставятся перед соответствующими веществами. Так как в молекулах K2Cr2O7 и Cr2(SO4)3 содержится по два атома хрома, двойки перед этими веществами опускаются.

K2Cr2O7 + 3H2S + H2SO4 = Cr2(SO4)3 + 3S + K2SO4 + H2O

5. Окончательно уравниваем число атомов каждого элемента в обеих частях молекулярного уравнения. Продукты реакции (Cr2(SO4)3, K2SO4), имеющие коэффициенты по единице, содержат 4 моль сульфат-ионов (SO42-), которые содержатся в серной кислоте, следовательно, перед ней ставится коэффициент 4. Чтобы количество атомов водорода было одинаково в левой и правой частях уравнения, перед водой ставится коэффициент 7:

K2Cr2O7 + 3H2S + 4H2SO4 = Cr2(SO4)3 + 3S + K2SO4 + 7H2O

Проверка количества остальных атомов показывает, что все коэффициенты подобраны.

Метод электронно-ионных уравнений (метод полуреакций). Этот метод основан на составлении уравнений процессов окисления и восстановления с помощью ионов и молекул, реально существующих в растворе. Степени окисления атомов не используют, а учитывают заряды ионов и характер среды (рН), в которой протекает ОВ-реакция. В качестве частиц среды в водных растворах могут принимать участие следующие частицы: Н+, ОН- и Н2О .

Для написания уравнения в ионно-молекулярной форме следует знать:

1. Сильные кислоты (например, HCl, H2SO4, HNO3) распадаются на ионы H+ и кислотный остаток, например, H2SO4 ®2H+ +SO42-

Слабые кислоты, для которых константа диссоциации Кд<10-3 (например, H2S, HCN), практически не диссоциируют на ионы и записываются в молекулярном виде.

2. Сильные основания (например, LiOH, NaOH, KOH) распадаются на катион металла и гидроксид-ион OH-, например, КОН ®К+ +OH-

Слабые основания, для которых Кд<10-3 (например, NH4OH), практически не диссоциируют на ионы и записываются в молекулярном виде.

3. Соли распадаются на катионы металла и кислотный остаток. Например, KBr ®K+ +Br-1 :

K BrО3 ® K+ + BrО3-1

K2Cr2O7® 2 K+ + Cr2O72-

4. Оксиды (например, MnO2, FeO, Fe2O3, CO2, SO2, NO) не распадаются на ионы.

5. Вода Н2О (Кд=1,8.10-16), пероксид водорода Н2О2д=1.10-25) как слабые электролиты, не распадаются на ионы.

Схема метода ионно-электронных уравнений:

1. Написать уравнение в ионно-молекулярной форме.

2. Определить кислотно-щелочность среды.

3. Определить частицы, изменившие свой заряд или состав, и записать реакции их превращения.

4. Составить материальный баланс для этих превращений, то есть количество атомов каждого из присутствующих элементов в левой и правой частях уравнения должно быть одинаково.

Если исходные вещества содержат большее число атомов кислорода, чем полученные продукты, то в кислой среде каждый атом кислорода можно связать двумя ионами водорода в воду, а в нейтральной и щелочной средах молекулой воды в гидроксид-ионы.

Если исходные вещества не содержат кислорода или содержат меньшее

число атомов кислорода, чем полученные продукты, то недостающее число атомов кислорода можно восполнить в нейтральной и кислой средах за счет молекул воды, а в щелочной – за счет двух ионов ОН-.

5. Уравнять полученные реакции по зарядам с участием электронов.

6. Составить электронный баланс между полуреакциями, учитывая, что количество принятых электронов должно равняться количеству отданных. Далее просуммировать полуреакции: сложить отдельно левые части и отдельно правые части уравнений. Если в суммарном уравнении имеются одинаковые частицы в левой и правой частях уравнения, то их сократить.

7. Полученные коэффициенты перенести в молекулярное уравнение и проверить материальный баланс.

Пример 3. Рассмотрим метод электронно-ионных уравнений для уравнивания ОВ-реакций между KMnO4 и KNO2 в кислой, нейтральной и щелочной средах.

Наши рекомендации