Необхідна і достатня умови існування екстремуму.
В т. екстремуму ф-ції її частинна похідна = 0 або не існує Þ в т. екстремуму диференційованої ф-ції виконується нерівність:
df/dx=0 і df/dy=0. Необхідна:
Достатня: ; AC – B2<0 – НЕ ІСНУЄ; АС – В2=0 – ?
A=¶2z/¶x2 (M0); C=¶2z/¶y2 (M0); B=¶2z/¶x¶y (M0)
Найбільше і найменше значення ф-ції на замкненій області.
Ф-ція, неперервна на замкненій обмеженій множині D, досягає в ній найбільшого і найменшого значення. Ці значення вона може приймати як у внутрішніх точках множини D? Так і на її межі, тобто необхідне спеціальне дослідження межових точок множини D.
Поняття первісно. Невизначений інтеграл.
Означення: Функція F(x) називається первісною для ф-ії f(x) на проміжку І, якщо на цьому проміжку F`(x)=f(x) або dF(x)=f(x)dx.
Із означення виходить, що первісна F(x) – диференційована, а значить неперервна функція на проміжку І, і її вигляд суттєво залежить від проміжку, на якому вона розглядається.
Теорема про множину первісних
Якщо F(x) – первісна для функції f(х) на проміжку І, то:
1. F(x)+С – також первісна для f(x) на проміжку І;
2. будь-яка первісна Ф(х) для f(x) може біти представлена у вигляді Ф(х)= F(x)+С на проміжку І. (Тут С=const називається довільною сталою).
Означення: Операція знаходження первісних для ф-ії f(x) називається інтегруванням.
Задача інтегрування функції на проміжку полягає в тому, щоб знайти всі первісні функції на цьому проміжку. Для розв’язання задачі інтегрування функції достатньо знайти одну будь-яку первісну на розглядуваному проміжку, наприклад F(x), тоді (за теоремою про множину первісних) F(x)+С – загальний вигляд всієї множини первісних на цьому проміжку.
Означення: Ф-ія F(x)+С, зо являє собою загальний вигляд всієї множини первісних для ф-ії f(x) на проміжку І і позначається
де f(x) – підінтегральна ф-ія; f(x)dx – підінтегральний вираз; dx – диференціал змінної інтегрування.
Теорема Коші. Для існування невизначеного інтеграла для ф-ії f(x) на певному проміжку достатньо, щоб f(x) була неперервною на цьому проміжку.
Неінтегровні інтеграли – які неможливо записати через основні елементарні ф-ії.
Властивості невизначеного інтеграла
Властивості, що випливають із означення невизн. інт:
І. похідна від невизначеного інтеграла дорівнює підінтегральній ф-ії:
ІІ. Диференціал від невизначеного інтеграла дорівнює підінтегральному виразу.
ІІІ.
Властивості, що відображають основні правила інтегрування:
IV. Сталий множник, що не дорівнює нулю, можна виносити з-під знака інтеграла.
V. Невизн. інтеграл від суми функцій дорівнює сумі невизначених інтегралів від цих функцій, якщо вони існують.
Інтегрування частинами
Теорема: Якщо функції u(x) та v(x) мають неперервні похідні, то:
На практиці ф-ії u(x) та v(x) рекомендується вибирати за таким правилом: при інтегруванні частинами підінтегральний вираз f(x)dx розбивають на два множники типу udv, тобто f(x)dx=udv; при цьому ф-ія u(x) вибирається такою, щоб при диференціюванні вона спрощувалася, а за dv приймають залишок підінтегрального виразу, який мітить dx, інтеграл від якого відомий, або може бути просто знайдений.
Деякі типи інтегралів і їх заміни:
v(x):
де Р(х) – многочлен, Q(x) – алгебраїчна ф-ія.