Методом симметричных составляющих.
В результате различного вида коротких замыканий в сложной энергосистеме возникает несимметричный режим. Расчет токов коротких замыканий в различных точках энергосистемы является важной инженерной задачей. Также расчеты выполняются методом симметричных составляющих.
В качестве примера рассмотрим определение тока однофазного короткого замыкания на землю в заданной точке простейшей энергосистемы. Символьная схема энергосистемы показана на рис. 110. Короткое замыкание фазы А на землю происходит в конце линии электропередачи.
В соответствии с теоремой о компенсации заменим (мысленно) несимметричный участок в точке короткого замыкания несимметричным трехфазным генератором (UA, UB, UC, причем UA =0). Несимметричную систему векторов напряжений разложим (мысленно) на симметричные составляющие UA1, UA2, UA0. Для каждой из симметричных составляющих схема цепи совершенно симметрична и может быть представлена в однофазном виде. Поэтому составляются однофазные схемы для прямой (рис. 111), обратной (рис. 112) и нулевой (рис. 113) последовательностей.
Далее в соответствии с теоремой об эквивалентном генераторе производится свертка расчетных схем для каждой из симметричных составляющих относительно выводов несимметричного участка ab. В результате свертки получаются простейшие одноконтурные схемы (рис. 114а, б, в):
Для каждой из расчетных схем (рис. 114а, б, в) составляются уравнения по 2-му закону Кирхгофа:
(1)
(2)
(3)
В полученной системе уравнений Кирхгофа содержится 6 неизвестных величин (IA1, IA2, IA0, UA1, UA2, UA0) и ее непосредственное решение невозможно. Поэтому система уравнений Кирхгофа дополняется тремя недостающими уравнениями, вытекающими из вида короткого замыкания. В рассматриваемом примере в точке короткого замыкания напряжение фазы А равно нулю (UA = 0), а также токи фаз В и С равны нулю (IB = IC = 0). Дополнительные уравнения будут иметь вид:
(4)
(5)
(6)
В результате совместного решения системы из 6-и уравнений определяются симметричные составляющие токов IA1, IA2, IA0. В рассматриваемом примере решение системы может быть выполнено в следующей последовательности.
1) Вычитаем почленно из уравнения (5) уравнение (6) и получаем:
, откуда следует, что IA1 = IA2.
2) Складываем почленно уравнение (5) и уравнение (6) и с учетом, что а2 – а = -1, получаем: , откуда следует, что IA1 = IA2 = IA0.
3) Складываем почленно уравнения (1), (2), (3) и с учетом уравнения (4) и равенства IA1 = IA2 = IA0 получаем:
, откуда следует решение для тока:
.
Все действительные токи определяются по методу наложения через соответствующие симметричные составляющие, например, ток короткого замыкания равен току фазы А:
.
11. Фильтры симметричных составляющих
Фильтрами симметричных составляющих называются технические устройства или схемы, служащие для выделения соответствующих составляющих токов или напряжений из несимметричной трёхфазной системы векторов.
Напряжения и токи, выделяемые фильтрами симметричных составляющих, используются на практике в качестве входных величин для релейной защиты энергетических установок (генераторов, трансформаторов, линий электропередачи) от несимметричных режимов, возникающих в результате коротких замыканий, или для соответствующей сигнализации о несимметричном режиме.
На рис. 115 представлена схема фильтра напряжения нулевой последовательности. Схема фильтра состоит из 3-х одинаковых трансформаторов с коэффициентом трансформации . Первичные обмотки трансформаторов включены на фазные напряжения по схеме звезды с нулевой точкой, а вторичные – в открытый треугольник.
Напряжение на выходе фильтра равно векторной сумме вторичных напряжений трансформаторов:
Учитывая, что , получим , где - коэффициент фильтра.
Фильтр напряжений обратной последовательности реализуется схемой рис. 116 при следующих соотношениях между параметрами элементов: , , .
Напряжение на отдельных участках схемы с учетом заданных соотношений между параметрами элементов:
Выходное напряжение фильтра:
Преобразуем формулу для напряжения обратной последовательности путем добавления и вычитания члена aUB:
Сравнивая полученное уравнение с предыдущим, найдём:
, где - коэффициент фильтра.
Векторная диаграмма напряжений фильтра показана на рис. 117а – для симметричной системы напряжений обратной последовательности, и на рис. 117б – для симметричной системы напряжений прямой последовательности.
Так как системы прямой и обратной последовательностей отличаются только порядком следования фаз, то из этого следует, что фильтр, выделяющий напряжение одной из этих последовательностей превращается в аналогичный фильтр для выделения напряжений другой последовательности путем перестановки любых двух фаз местами.