Пункт 3. Расстояние от точки до плоскости.

Пусть дано уравнение плоскости Пункт 3. Расстояние от точки до плоскости. - student2.ru и произвольная точка Пункт 3. Расстояние от точки до плоскости. - student2.ru .

Пункт 3. Расстояние от точки до плоскости. - student2.ru Возможно, она лежит в плоскости (тогда расстояние по формуле автоматически получится 0). Но в общем случае она не принадлежит плоскости. Мы не знаем, где основание перпендикуляра, более того, его и не потребуется искать.  

Возьмём произвольную точку Пункт 3. Расстояние от точки до плоскости. - student2.ru в плоскости. Сделать это просто: присвоим какие-нибудь значения 2 переменным из трёх, и вычислим третью. Например, как правило, задать x,y и вычислить z.

Итак, выбрали какую-то точку в плоскости. Отрезок между Пункт 3. Расстояние от точки до плоскости. - student2.ru и Пункт 3. Расстояние от точки до плоскости. - student2.ru не перпендикулярен плоскости, но его проекция на нормаль - это как раз и есть кратчайшее расстояние до плоскости (d).

Пункт 3. Расстояние от точки до плоскости. - student2.ru = Пункт 3. Расстояние от точки до плоскости. - student2.ru Пункт 3. Расстояние от точки до плоскости. - student2.ru .

Если подставить в уравнение плоскости (в числителе) точку, лежащую в плоскости, то получим 0. Поэтому и получится d=0. В общем же случае, результат подстановки некоторой точки, не лежащей в плоскости, в уравнение плоскости, характеризует удаление от плоскости.

Пункт 4. Взаимное расположение плоскостей

Пусть даны 2 плоскости.

Пункт 3. Расстояние от точки до плоскости. - student2.ru

Пункт 3. Расстояние от точки до плоскости. - student2.ru

Если рассматривать это как систему уравнений, то видим, что 2 уравнения и 3 переменных, то есть по меньшей мере одна свободная переменная. Это означает, что если решения есть, то их бесконечно много. Это и есть все точки, принадлежащие прямой, являющейся пересечением плоскостей.

Чтобы найти пересечение, достаточно решить систему уравнений, где 2 уравнения - это и есть уравнения этих плоскостей.

Если Пункт 3. Расстояние от точки до плоскости. - student2.ru то плоскости совпадают, так как уравнения полностью пропорциональны.

Если Пункт 3. Расстояние от точки до плоскости. - student2.ru то плоскости параллельны. Дело в том, что если из одного уравнения вычесть кратное второму, то получим все 0 коэффициенты при x, y, z, и останется противоречивое уравнение (некая ненулевая константа = 0).

Если пропорциональность нарушена среди каких-то из первых 3 дробей, то плоскости пересекаются по прямой.

Пункт 5. Угол между плоскостями и метод его нахождения.

Пункт 3. Расстояние от точки до плоскости. - student2.ru Можно искать как угол между нормалями Пункт 3. Расстояние от точки до плоскости. - student2.ru (показаны красным). Их координаты известны - это Пункт 3. Расстояние от точки до плоскости. - student2.ru и Пункт 3. Расстояние от точки до плоскости. - student2.ru . В то же время известно, что Пункт 3. Расстояние от точки до плоскости. - student2.ru . Тогда Пункт 3. Расстояние от точки до плоскости. - student2.ru = Пункт 3. Расстояние от точки до плоскости. - student2.ru . Пункт 3. Расстояние от точки до плоскости. - student2.ru .

Прямая в пространстве.

Для прямой на плоскости и для плоскости в пространстве есть однозначно определённое направление нормали (перпендикуляра) т.к. там размерности рассматриваемых многообразий 1 и 2 (2 и 3 соответственно), то есть «не хватает» одной размерности. А для прямой в пространстве не хватает 2 размерностей (1 и 3). Это совершенно новый случай, здесь нельзя однозначно задать перпендикуляр. Есть целая плоскость, перпендикулярная прямой, то есть бесконечное число нормалей. А вот направляющий вектор однозначно определён (с точность до его длины, конечно). Это проявится в том, что мы получим другой тип уравнений.

п.1. Построение уравнения прямой по точке и направляющему вектору.

Пункт 3. Расстояние от точки до плоскости. - student2.ru Пусть дана точка Пункт 3. Расстояние от точки до плоскости. - student2.ru с координатами Пункт 3. Расстояние от точки до плоскости. - student2.ru и направляющий вектор Пункт 3. Расстояние от точки до плоскости. - student2.ru (выделен жирно на чертеже) Представим себе, что какая-то произвольная точка Пункт 3. Расстояние от точки до плоскости. - student2.ru с координатами Пункт 3. Расстояние от точки до плоскости. - student2.ru лежит на этой же прямой. Тогда Пункт 3. Расстояние от точки до плоскости. - student2.ru и Пункт 3. Расстояние от точки до плоскости. - student2.ru коллинеарны, то есть их координаты - пропорциональны, т.е. Пункт 3. Расстояние от точки до плоскости. - student2.ru

тогда Пункт 3. Расстояние от точки до плоскости. - student2.ru . Это канонические уравнения прямой в пространстве.

Фактически здесь не одно а два уравнения, впрочем, это понятно: ведь прямая может быть задана как пересечение 2 плоскостей. Кстати, если перемножить 1-ю и 2-ю пропорции независимо друг от друга, и свести к обычным уравнениям, то мы и получили бы уравнения каких-то 2 плоскостей.

Если эти 3 дроби равны, то можно приравнять их к некоторому параметру t.

Пункт 3. Расстояние от точки до плоскости. - student2.ru . Если теперь выразим x,y,z через t из каждой дроби по отдельности, получим:

Пункт 3. Расстояние от точки до плоскости. - student2.ru - параметрические уравнения. Это физические уравнения движения, в момент времени t=0 находимся в точке Пункт 3. Расстояние от точки до плоскости. - student2.ru , в момент времени t=1 сдвинулись к концу направляющего вектора.

Векторный вид записи этих 3 равенств: Пункт 3. Расстояние от точки до плоскости. - student2.ru . При t=0 радиус-вектор из начала координат к исходной точке, через 1 секунду он будет направлен в конец вектора Пункт 3. Расстояние от точки до плоскости. - student2.ru .

Пример. Точка (1,1,1) направляющий вектор (1,2,3).

Пункт 3. Расстояние от точки до плоскости. - student2.ru , тогда Пункт 3. Расстояние от точки до плоскости. - student2.ru - канонические уравнения.

Параметрические: Пункт 3. Расстояние от точки до плоскости. - student2.ru

Если привести 2 пропорции Пункт 3. Расстояние от точки до плоскости. - student2.ru и Пункт 3. Расстояние от точки до плоскости. - student2.ru то получим

Пункт 3. Расстояние от точки до плоскости. - student2.ru и Пункт 3. Расстояние от точки до плоскости. - student2.ru , то есть Пункт 3. Расстояние от точки до плоскости. - student2.ru и Пункт 3. Расстояние от точки до плоскости. - student2.ru

это и есть уравнения двух плоскостей, в пересечении который лежит эта прямая.

Замечание. Если требуется построить уравнение прямой по 2 точкам, то направляющий вектор от 1-й ко 2-й точке, и далее известный алгортим.

Наши рекомендации