Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики.

Функции распределения и плотности распределенияБудем рассматривать двумерный случайный вектор Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru .будем считать, что случайный вектор Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru принимает значения Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru .Функция распределения двумерного случайного вектора есть вероятность совместного осуществления событий: Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru Плотность распределения, как и ранее, есть производная от функции распределения по обоим аргументам:

Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru

Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru ,поэтому Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru .

В силу монотонности вероятностной меры функция распределения - неубывающая функция по каждому аргументу, а потому плотность распределения есть неотрицательная функция двух аргументов, которая описывает некоторую поверхность над координатной плоскостью. Эта поверхность приближается к плоскости XOY при удалении значений аргументов от начала координат по любому направлению. Понятно, что Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru .Если по одному из аргументов ограничений нет, то Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru . Таким образом мы получили маргинальные (частные) функции распределения Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru и Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru . Дифференцирование этих функций по их аргументам, то есть дифференцирование соответствующих интегралов по их верхним пределам, по определению, дает маргинальные (частные) плотности распределения: Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru , Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru .

Числовые характеристики

Моменты случайных величин определяются, как и ранее, формулами

- начальные моменты k - го порядка Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru .- центральные моменты k - го порядка:

Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru , Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru .Среди этих моментов самыми употребительными являются математи­ческие ожидания Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru и дисперсии Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru , Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru . Математическое Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru ожидание случайного вектора есть вектор, компонентами которого являются математические ожидания соответствующих составляющих:

Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru .Из условных моментов выделим лишь первые начальные (условные математические ожидания) и вторые центральные (условные дисперсии): Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru , Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru , Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru , Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru .Как и ранее, во всех случаях Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru , Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru , Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru , Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru .Для двумерных случайных величин вводятся смешанные моменты:- начальные порядка k, r Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru ,

-центральные порядка k, r :Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru .Из них наиболее употребительным является центральный смешанный момент порядка (1, 1),который называется ковариацией и обозначается, как cov(x, h):Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru .Выясним связь между этим и начальным смешанным моментом того же порядка.Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru

Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru.В итоге получаем, что Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru Если случайные величины x и hнезависимы,в соответствии с признаком независимости, сформулированным выше,Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru= Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru ,то есть мы видим, что двукратный интеграл в этих условиях преобразуется в произведение однократных интегралов, каждый из которых равен нулю. В самом деле, Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru .Поэтому при условии независимости случайных величин x и hих первый центральный смешаный момент или ковариация равна 0.В случае взаимнооднозначной зависимости междуx и h,например, линейной Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ruковариация равнаДвумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru Двумерные случайные величины,функцияраспределения,плотностьраспределения,маргинальныеплотности,формулы для вычисления вероятностноймеры двумерной области,числовые характеристики. - student2.ru .

Наши рекомендации