Векторная функция скалярного аргумента
z
A(x, y, z)
y
х
Пусть некоторая кривая в пространстве задана параметрически:
x = j(t); y = y(t); z = f(t);
Радиус- вектор произвольной точки кривой: .
Таким образом, радиус- вектор точки кривой может рассматриваться как некоторая векторная функция скалярного аргумента t. При изменении параметра t изменяется величина и направление вектора .
Запишем соотношения для некоторой точки t0:
Тогда вектор - предел функции (t). .
Очевидно, что
, тогда
.
Чтобы найти производную векторной функции скалярного аргумента, рассмотрим приращение радиус- вектора при некотором приращении параметра t.
; ;
или, если существуют производные j¢(t), y¢(t), f¢(t), то
Это выражение – вектор производная вектора .
Если имеется уравнение кривой:
x = j(t); y = y(t); z = f(t);
то в произвольной точке кривой А(xА, yА, zА) с радиус- вектором
можно провести прямую с уравнением
Т.к. производная - вектор, направленный по касательной к кривой, то
.
Уравнение нормальной плоскостик кривой будет иметь вид:
Пример. Составить уравнения касательной и нормальной плоскости к линии, заданной уравнением в точке t = p/2.
Уравнения, описывающие кривую, по осям координат имеют вид:
x(t) = cost; y(t) = sint; z(t) = ;
Находим значения функций и их производных в заданной точке:
x¢(t) = -sint; y¢(t) = cost;
x¢(p/2) = -1; y¢(p/2) = 0; z¢(p/2)=
x(p/2) = 0; y(p/2) = 1; z(p/2)= p /2
- это уравнение касательной.
Нормальная плоскость имеет уравнение:
Параметрическое задание функции
Исследование и построение графика кривой, которая задана системой уравнений вида:
,
производится в общем то аналогично исследованию функции вида y = f(x).
Находим производные:
Теперь можно найти производную . Далее находятся значения параметра t, при которых хотя бы одна из производных j¢(t) или y¢(t) равна нулю или не существует. Такие значения параметра t называются критическими.
Для каждого интервала (t1, t2), (t2, t3), … , (tk-1, tk) находим соответствующий интервал (x1, x2), (x2, x3), … , (xk-1, xk) и определяем знак производной на каждом из полученных интервалов, тем самым определяя промежутки возрастания и убывания функции.
Далее находим вторую производную функции на каждом из интервалов и, определяя ее знак, находим направление выпуклости кривой в каждой точке.
Для нахождения асимптот находим такие значения t, при приближении к которым или х или у стремится к бесконечности, и такие значения t, при приближении к которым и х и у стремится к бесконечности.
В остальном исследование производится аналогичным также, как и исследование функции, заданной непосредственно.
На практике исследование параметрически заданных функций осуществляется, например, при нахождении траектории движущегося объекта, где роль параметра t выполняет время.
Ниже рассмотрим подробнее некоторые широко известные типы параметрически заданных кривых.