Определение грузоподъемности статически

определимой конструкции, работающей на растяжение-сжатие (задача № 3)

Условие задачи

Конструкция, состоящая из стержней, соединенных шарнирами, загружена силой F (рис. 1.5). Сечения стержней – из прокатных профилей, площади сечений можно найти по сортаментам стального проката (например, в [1]). Цель расчета:

1) определить значение допускаемой нагрузки;

2) найти перемещение узла С.

Определение грузоподъемности статически - student2.ru Рис. 1.5. Схема конструкции в задаче № 3

Примечание. Если на схеме, выбранной студентом по [4], один стержень показан более жирным, то его следует считать абсолютно жестким, т. е. деформациями этого стержня нужно пренебречь.

Решение

Определение грузоподъемности статически - student2.ru   Рис. 1.6. План сил

Для определения усилий используем метод сечений. Для этого нарисуем план сил: рассечем деформируемые стержни конструкции и отброшенные части стержней заменим продольными силами N1 и N2 (рис. 1.6). Найдем усилия N1 и N2 из уравнений равновесия отсеченной части конструкции. Желательно составлять такие уравнения равновесия, чтобы в каждое уравнение входило только одно неизвестное усилие, например, Определение грузоподъемности статически - student2.ru Определение грузоподъемности статически - student2.ru для определения N1 и Определение грузоподъемности статически - student2.ru (рис. 1.6) для нахождения N2..[1]. Эти уравнения в рассматриваемой задаче имеют вид:

Определение грузоподъемности статически - student2.ru и Определение грузоподъемности статически - student2.ru . Откуда

Определение грузоподъемности статически - student2.ru и Определение грузоподъемности статически - student2.ru .

Знак минус показывает, что направление усилия в стержне 2 противоположно показанному на рис. 1.6, т. е. стержень 2 сжат.

Определим напряжения по (1.1) и выберем наиболее напряженный стержень (допустим, что в рассматриваемой задаче это будет стержень 1).

Из условия прочности этого стержня получим значение допускаемой нагрузки:

Определение грузоподъемности статически - student2.ru , Определение грузоподъемности статически - student2.ru .

Найдем перемещение узла С, построив план перемещений (рис. 1.7). Предварительно найдем абсолютные деформации стержней Dl1и Dl2 по формуле (1.3). В рассматриваемой задаче растянутый стержень 1 будет удлиняться, а сжатый стержень 2 – укорачиваться. Для построения плана перемещений нарисуем схему конструкции в масштабе и отложим отрезки Dl1 и Dl2 вдоль оси каждого стержня, выбрав масштаб для деформаций так, чтобы картинка плана перемещений была наглядной. В процессе деформации стержни поворачиваются относительно точек А и В по дугам. Из-за малости деформаций эти дуги заменяем касательными, т. е. перпендикулярами к направлениям стержней (отрезки Определение грузоподъемности статически - student2.ru и Определение грузоподъемности статически - student2.ru на рис. 1.7). На пересечении дуг (перпендикуляров к направлениям стержней) находится новое положение узла C после деформации – точка Определение грузоподъемности статически - student2.ru на рис. 1.7. Вертикальное и горизонтальное перемещение узла C допускается определять по масштабу, не делая сложных геометрических выкладок.

Определение грузоподъемности статически - student2.ru Рис. 1.7. План перемещений

Примечание. Если конструкция имеет абсолютно жесткий стержень, то принцип построения плана перемещений тот же. Все точки абсолютно жесткого стержня могут перемещаться только по дугам (перпендикулярам к направлению стержня), поворачиваясь вокруг неподвижного шарнира. Например, если стержень АС на рис. 1.7 считать абсолютно жестким, то точка С переместится в положение Определение грузоподъемности статически - student2.ru и горизонтальное перемещение узла С будет равно нулю.

Наши рекомендации