Метод искусственного базиса

Метод искусственного базиса применяется для решения задач ЛП в случае, когда задача не имеет начального опорного решения с базисом из единичных векторов.

Пусть задана задача ЛП в канонической форме, то есть имеет вид (1.6), и в ней отсутствует единичный базис. К этой задаче строим вспомогательную задачу (ВЗ): Метод искусственного базиса - student2.ru

Метод искусственного базиса - student2.ru

Здесь w1, w2,…, wm – искусственные переменные. Запишем ограничения в векторном виде: A1x1+A2x2+…+Anxn+An+1w1+…+An+mwm =B, где Метод искусственного базиса - student2.ru , Метод искусственного базиса - student2.ru , …, Метод искусственного базиса - student2.ru , Метод искусственного базиса - student2.ru , Метод искусственного базиса - student2.ru , …, Метод искусственного базиса - student2.ru , Метод искусственного базиса - student2.ru . Таким образом, вектора Метод искусственного базиса - student2.ru , Метод искусственного базиса - student2.ru , …, Метод искусственного базиса - student2.ru образуют единичный базис в Rm, и все искусственные переменные соответствующие этим векторам будут базисными. Далее строится обычная симплекс-таблица. Если ВЗ не имеет решения в силу неограниченности целевой функции, то исходная задача также не имеет решения по той же причине. Пусть в результате знакомых по симплекс-методу необходимых преобразований получили оптимальную симплекс-таблицу к ВЗ. Очевидно, что максимальное значение целевой функции ВЗ равно 0, то есть max F=0. Если же maxF<0, то исходная задача ЛП не имеет решения в силу несовместности системы ограничений. Предположим, что max F=0. Тогда возможны такие ситуации:

1) все искусственные переменные стали свободными и были исключены из таблицы. В этом случае вычеркиваем столбцы, соответствующие искусственным переменным и последнюю строку. Вместо неё приписываем новую строку оценок, но с использованием исходной целевой функции Z(X). Тем самым получена начальная симплекс-таблица для исходной задачи ЛП, к которой применяем симплекс-метод;

2) в оптимальном решении ВЗ хотя бы одна искусственная переменная осталась базисной. Тогда:

а) либо все числа в строках, соответствующих оставшимся базисным искусственным переменным, равны 0;

б) либо есть хоть одно отличное от 0.

В первом случае, поступаем также как и пункте 1). Во втором, выбираем любой ненулевой элемент в качестве ведущего и делаем шаг жордановых исключений. Через конечное число шагов мы придем или к пункту 1), или к пункту 2)а).

Заметим, что если среди векторов Aj , j=1,2,…,n, были вектора, которые могли бы войти в базис, то искусственные переменные вводят только в те уравнения системы ограничений, в которых отсутствует базисная переменная.

Пример 1.3. Максимизировать функцию Z=x1+2x2-2x3 при ограничениях

Метод искусственного базиса - student2.ru

Решение. Преобразуем исходную задачу линейного программирования к канонической. Для этого введём в ограничения дополнительные неотрицательные переменные. А именно, в первое неравенство – переменную x4 со знаком «+», во второе – x5 со знаком «-» . Система ограничений примет вид:

Метод искусственного базиса - student2.ru

Эту систему запишем в векторной форме: A1x1+A2x2+A3x3+A4x4+A5x5=B, где

Метод искусственного базиса - student2.ru , Метод искусственного базиса - student2.ru , Метод искусственного базиса - student2.ru , Метод искусственного базиса - student2.ru , Метод искусственного базиса - student2.ru , Метод искусственного базиса - student2.ru . Очевидно, что в данной системе ограничений отсутствует единичный базис. Это означает, что среди векторов Aj нет трёх необходимых единичных векторов, которые должны образовывать базис в R3. Однако заметим, что вектор A4 является частью базиса. Ему соответствует базисная переменная x4. Необходимо найти ещё два единичных вектора. Для этого применим метод искусственного базиса. Введём искусственные переменные в те уравнения ограничений, в которых не присутствует базисная переменная x4 и построим следующую вспомогательную задачу (ВЗ):

F=-w1-w2®max

Метод искусственного базиса - student2.ru

где w1, w2 – искусственные переменные. Система ограничений ВЗ в векторном виде имеет вид: A1x1+A2x2+A3x3+A4x4+A5x5+A6w1+A7w2=B, где вектора Aj , j=1,2,3,4,5 определяются также, как и выше, а Метод искусственного базиса - student2.ru и Метод искусственного базиса - student2.ru . Таким образом, вектора A4, A6, A7 образуют базис в R3 и им соответствуют базисные переменные (БП) – x4, w1, w2. Все остальные переменные, а именно x1, x2, x3, x5 объявляются свободными (СП). Далее к ВЗ применяем обычный симплекс-метод. Как и раньше, см. §5.1, начальный опорный план получается, если присвоить свободным переменным значения, равные нулю. При этом базисные переменные принимают значения, равные числам в соответствующей строке столбца свободных коэффициентов В, то есть x1=x2=x3=x5=0¸ а x4=8, w1=4, w2=12. Строим симплекс-таблицу, соответствующую начальному опорному плану:

СП БП . x1 x2 x3 x5 B
x4 -3
w1 -1
w2 -2
F -4 -3 -16

С этой таблицей проводим необходимые преобразования симплекс-метода, пока не получим оптимальную симплекс-таблицу или неразрешимость. В нашем случае, мы уже на втором шаге будем иметь такую симплекс-таблицу:

СП БП . w1 x2 x3 w2 B
x4 -0,5 -3 -0,5 -0,5
x1 0,25 0,75 0,25
x5 -0,75 -2
F

Эта таблица будет оптимальной для ВЗ. При этом все искусственные переменные стали свободными и max F=0. Вычеркивая столбцы, соответствующие искусственным переменным и последнюю строку, и приписывая новую строку оценок с использованием исходной целевой функции Z(X), получим начальную симплекс-таблицу для исходной задачи ЛП:

СП БП . x2 x3 B
x4 -3 -0,5
x1 0,75
x5 -2
Z -2 2,75

Проанализировав последнюю таблицу, делаем вывод, что исходная задача ЛП не имеет решения в силу неограниченности целевой функции.

Наши рекомендации