Соединение фаз генератора и приемника звездой
Трехфазные электрические цепи
Основные понятия и определения
Трехфазная цепь является частным случаем многофазных систем электрических цепей, представляющих собой совокупность электрических цепей, в которых действуют синусоидальные ЭДС одинаковой частоты, отличающиеся по фазе одна от другой и создаваемые общим источником энергии.
Каждую из частей многофазной системы, характеризующуюся одинаковым током, принято называть фазой. Таким образом, понятие "фаза" имеет в электротехнике два значения: первое – аргумент синусоидально изменяющейся величины, второе – часть многофазной системы электрических цепей. Цепи в зависимости от количества фаз называют двухфазными, трехфазными, шестифазными и т.п.
Трехфазные цепи – наиболее распространенные в современной электроэнергетике. Это объясняется рядом их преимуществ по сравнению как с однофазными, так и с другими многофазными цепями:
· экономичность производства и передачи энергии по сравнению с однофазными цепями;
· возможность сравнительно простого получения кругового вращающегося магнитного поля, необходимого для трехфазного асинхронного двигателя;
· возможность получения в одной установке двух эксплуатационных напряжений – фазного и линейного.
Трехфазная цепь состоит из трех основных элементов: трехфазного генератора, в котором механическая энергия преобразуется в электрическую с трехфазной системой ЭДС; линии передачи со всем необходимым оборудованием; приемников (потребителей), которые могут быть как трехфазными (например, трехфазные асинхронные двигатели), так и однофазными (например, лампы накаливания).
Трехфазный генератор представляет собой синхронную машину двух типов: турбогенератор и гидрогенератор. Модель трехфазного генератора схематически изображена на рис. 3.1.
Рис. 3.1
На статоре 1 генератора размещается обмотка 2, состоящая из трех частей или, как их принято называть, фаз. Обмотки фаз располагаются на статоре таким образом, чтобы их магнитные оси были сдвинуты в пространстве относительно друг друга на угол 2π/3, т.е. на 120°. На рис. 3.1 каждая фаза обмотки статора условно показана состоящей из одного витка. Начала фаз обозначены буквами A, B и C, а концы – X, Y, Z. Ротор 3 представляет собой электромагнит, возбуждаемый постоянным током обмотки возбуждения 4, расположенной на роторе.
При вращении ротора турбиной с равномерной скоростью в обмотках фаз статора индуктируются периодически изменяющиеся синусоидальные ЭДС одинаковой частоты и амплитуды, но отличающиеся друг от друга по фазе на 120° вследствие их пространственного смещения.
На схеме обмотку (или фазу) источника питания изображают как показано на рис. 3.2.
За условное положительное направление ЭДС в каждой фазе принимают направление от конца к началу. Обычно индуктированные в обмотках статора ЭДС имеют одинаковые амплитуды и сдвинуты по фазе относительно друг друга на один и тот же угол 120°. Такая система ЭДС называется симметричной.
Рис. 3.2
Трехфазная симметричная система ЭДС может изображаться графиками, тригонометрическими функциями, векторами и функциями комплексного переменного.
Графики мгновенных значений трехфазной симметричной системы ЭДС показаны на рис. 3.3.
Если ЭДС одной фазы (например, фазы A) принять за исходную и считать её начальную фазу равной нулю, то выражения мгновенных значений ЭДС можно записать в виде
(3.1)
eA=Emsinωt,
eB=Emsin(ωt−120°),
eC=Emsin(ωt−240°)=Emsin(ωt+120°).
Из графика мгновенных значений (рис 3.3) следует
(3.2)
eA+eB+eC=0
Комплексные действующие ЭДС будут иметь выражения:
(3.3)
ĖA=Emej0°=Em(1+j0),
ĖB=Eme−j120°=Em(−1/2−j /2),
ĖC=Eme+j120°=Em(−1/2+j /2).
Векторная диаграмма трехфазной симметричной системы ЭДС показана на рис 3.4а.
Рис. 3.4
На диаграмме рис. 3.4а вектор ĖA направлен вертикально, так как при расчете трехфазных цепей принято направлять вертикально вверх ось действительных величин. Из векторных диаграмм рис 3.4 следует, что для симметричной трехфазной системы геометрическая сумма векторов ЭДС всех фаз равна нулю:
(3.4)
ĖA+ĖB+ĖC=0.
Систему ЭДС, в которой ЭДС фазы B отстает по фазе от ЭДС фазы A, а ЭДС фазы C по фазе – от ЭДС фазы B, называют системой прямой последовательности. Если изменить направление вращения ротора генератора, то последовательность фаз изменится (рис. 3.4б) и будет называться обратной.
Последовательность фаз определяет направление вращения трехфазных двигателей. Для определения последовательности фаз имеются специальные приборы – фазоуказатели.
В период зарождения трехфазных систем имелись попытки использовать несвязанную систему, в которой фазы обмотки генератора не были электрически соединены между собой и каждая фаза соединялась со своим приемником двумя проводами (рис. 3.5). Такие системы не получили применения вследствие их неэкономичности: для соединения генератора с приемником требовалось шесть проводов (рис. 3.5)
Рис. 3.5
Более совершенными и экономичными являются связанные цепи, в которых фазы обмотки электрически соединены между собой. Существуют различные способы соединения фаз трехфазных источников питания и трехфазных потребителей электроэнергии. Наиболее распространенными являются соединения "звезда" и "треугольник". При этом способ соединения фаз источников и фаз потребителей в трехфазных системах могут быть различными. Фазы источника обычно соединены "звездой", фазы потребителей соединяются либо "звездой", либо "треугольником".
Соединение фаз генератора и приемника звездой
При соединение фаз обмотки генератора (или трансформатора) звездой их концы X, Y и Z соединяют в одну общую точку N, называемую нейтральной точкой (или нейтралью) (рис. 3.6). Концы фаз приемников (Za, Zb, Zc) также соединяют в одну точку n. Такое соединение называется соединение звезда.
Рис. 3.6
Провода A−a, B−b и C−c, соединяющие начала фаз генератора и приемника, называются линейными, провод N−n, соединяющий точкуN генератора с точкой n приемника, – нейтральным.
Трехфазная цепь с нейтральным проводом будет четырехпроводной, без нейтрального провода – трехпроводной.
В трехфазных цепях различают фазные и линейные напряжения. Фазное напряжение UФ – напряжение между началом и концом фазы или между линейным проводом и нейтралью (UA, UB, UC у источника; Ua, Ub, Uc у приемника). Если сопротивлением проводов можно пренебречь, то фазное напряжение в приемнике считают таким же, как и в источнике. (UA=Ua, UB=Ub, UC=Uc). За условно положительные направления фазных напряжений принимают направления от начала к концу фаз.
Линейное напряжение (UЛ) – напряжение между линейными проводами или между одноименными выводами разных фаз (UAB, UBC, UCA). Условно положительные направления линейных напряжений приняты от точек, соответствующих первому индексу, к точкам соответствующим второму индексу (рис. 3.6).
По аналогии с фазными и линейными напряжениями различают также фазные и линейные токи:
· Фазные (IФ) – это токи в фазах генератора и приемников.
· Линейные (IЛ) – токи в линейных проводах.
При соединении в звезду фазные и линейные токи равны
(3.5)
IФ=IЛ.
Ток, протекающий в нейтральном проводе, обозначают IN.
По первому закону Кирхгофа для нейтральной точки n (N) имеем в комплексной форме
(3.6)
İN=İA+İB+İC.
Рис. 3.7
В соответствии с выбранными условными положительными направлениями фазных и линейных напряжений можно записать уравнения по второму закону Кирхгофа.
(3.7)
ÚAB=ÚA−ÚB; ÚBC=ÚB−ÚC; ÚCA=ÚC−ÚA.
Согласно этим выражениям на рис. 3.7а построена векторная диаграмма, из которой видно, что при симметричной системе фазных напряжений система линейных напряжений тоже симметрична: UAB, UBC, UCA равны по величине и сдвинуты по фазе относительно друг друга на 120° (общее обозначение UЛ), и опережают, соответственно, векторы фазных напряжений UA, UB, UC, (UФ) на угол 30°.
Действующие значения линейных напряжений можно определить графи-чески по векторной диаграмме или по формуле (3.8), которая следует из треугольника, образованного векторами двух фазных и одного линейного напряжений:
UЛ=2UФcos30°
или
(3.8)
UЛ= UФ.
Предусмотренные ГОСТом линейные и фазные напряжения для цепей низкого напряжения связаны между собой соотношениями:
UЛ=660В;UФ=380В;
UЛ=380В;UФ=220В;
UЛ=220В;UФ=127В.
Векторную диаграмму удобно выполнить топографической (рис. 3.7б), тогда каждой точке цепи соответствует определенная точка на диаграмме. Вектор, проведенный между двумя точками топографической диаграммы, выражает по величине и фазе напряжения между одноименными точками цепи.