Тепловой расчет рекуперативного теплообменного аппарата

В настоящее время имеется, по крайней мере, три типа задач, связанных с тепловым расчетом теплообменных аппаратов.

1. Выбор теплообменного аппарата из серии типовых по каталогам.

2. Конструирование нового теплообменного аппарата, не связанного ограничениями каталогов или проектирование новой серии аппаратов.

3. Поверочный расчет теплообменного аппарата в связи с изменением технологических параметров процесса.

Конструктивный расчет теплообменного аппарата ставит своей целью определение величины рабочей поверхности теплообмена. При этом известен поток передаваемой теплоты или массовые расходы теплоносителей и изменение их температуры по длине аппарата.

Поверочный расчет теплообменного аппарата выполняется для теплообменника с известной величиной рабочей поверхности теплообмена. В результате расчета определяются температуры теплоносителей на выходе из теплообменника и поток передаваемого тепла.

В рекуперативном теплообменнике процесс теплообмена описывается уравнением теплового баланса и уравнением теплопередачи. В стационарных условиях, с учетом потерь, поток тепла, отводимый от горячего теплоносителя, равен потоку тепла, подводимого к холодному теплоносителю. Поэтому уравнение теплового баланса имеет вид

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru (8.1)

где G – массовый расход теплоносителя;

ср – изобарная удельная массовая теплоемкость теплоносителя;

Т – температура теплоносителя;

h – коэффициент полезного действия теплообменника, учитывающий потери тепла в окружающую среду и равный 0,97¸0,995;

С – теплоемкость массового расхода теплоносителя;

1, 2 – индексы, относящиеся соответственно к первичному (горячему) и вторичному (холодному) теплоносителям;

¢, ² – штрихи, относящиеся соответственно к входу в теплообменник и к его выходу.

Обозначим изменение температуры по длине всего теплообменника через dТ. Тогда, пренебрегая тепловыми потерями h=1, соотношение (8.1) можно записать в виде

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru (8.2)

Следовательно, чем больше теплоемкость массового расхода теплоно-сителя С, тем меньше меняется его температура в пределах теплообменника. Из уравнения теплопередачи для того же потока теплоты получим

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru (8.3)

где Тепловой расчет рекуперативного теплообменного аппарата - student2.ru – средние значения коэффициента теплопередачи и температурного напора между теплоносителями для всего теплообменника.

При конструктивном расчете из этой формулы определяется рабочая поверхность теплообменника

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru (8.4)

Для расчета рабочей поверхности по этому соотношению коэффициент теплопередачи определяется, как это было показано в главе 3, обычно по формулам плоской стенки, так как в трубчатых теплообменниках трубки имеют небольшую толщину. Когда в пределах аппарата на отдельных участках рабочей поверхности условия теплообмена различны, то коэффициенты теплоотдачи и теплопередачи рассчитываются для каждого участка в отдельности. Среднее значение коэффициента теплопередачи для всей рабочей поверхности теплообменника определяют по формуле

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru (8.5)

где Тепловой расчет рекуперативного теплообменного аппарата - student2.ru – коэффициент теплопередачи каждого участка;

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru – относительная площадь этого участка;

n – число участков, на которое подразделена рабочая поверхность.

Для определения среднего температурного напора запишем уравнение теплопередачи и уравнение теплового баланса для элемента рабочей поверхности dx прямоточного теплообменника, как это показано на рис. 8.1.

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru (8.6)

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru

где знак минус обусловлен падением температуры первичного теплоносителя по длине теплообменника.

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru

Т

Из последнего уравнения можно получить

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru

Вычитая, левые и правые части последних равенств, получим

       
   
F
 
Рис. 8.1
 

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru (8.7)

Заменив в этом равенстве dQ из формулы (8.6) и разделив переменные, имеем

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru (8.8)

Проинтегрировав это уравнение от входного до выходного сечения теплообменника, получим

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru (8.9)

Перепишем уравнение (8.1) при h=1 в следующем виде

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru

Если подставить это выражение в (8.9) и заменить в нем величину kF из уравнения (83), то получим окончательную формулу для средне логарифмического температурного напора

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru (8.10)

Эта формула применяется не только для прямоточного, но и для противоточного теплообменника. Подставив (8.10) и (8.5) в формулу (8.4), получим окончательно величину рабочей поверхности теплообменника. Решения для среднего температурного напора в случае более сложных схем движения теплоносителей имеют громоздкий характер. Поэтому для таких схем движения теплоносителей средний температурный напор определяют по формуле

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru (8.11)

где Тепловой расчет рекуперативного теплообменного аппарата - student2.ru – поправка, которая зависит от двух безразмерных величин:

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru (8.12)

Зависимости Тепловой расчет рекуперативного теплообменного аппарата - student2.ru =f(R,P) рассчитаны для различных схем движения теплоносителей и приводятся в справочной литературе [1, 4, 6]. При одинако-вых температурах теплоносителей на входе и на выходе теплообменного аппарата в противоточном теплообменнике температурный напор будет наи-большим, а прямоточном – наименьший. В случае противоточной схемы движение теплоносителей и прочих равных условиях благодаря большой вели-чине температурного напора рабочая поверхность теплообмена будет наимень-шей. Если по конструктивным причинам нет ограничений на выбор схемы движения теплоносителей, то противоточный теплообменник предпочтительнее прямоточного. При С12<0,05 или С12>10 и при kF/C1®0 обе схемы движе-ния теплоносителей становятся равноценными. Первое условие соответствует малому изменению температуры одного из теплоносителей по длине теплообменника. Второе условие означает, что средний температурный напор существенно превышает изменение температуры одного из теплоносителей.

Как было показано выше, коэффициенты теплоотдачи определяются из уравнений подобия. В эти уравнение входят теплофизические свойства жидкостей, которые выбирают при определяющей температуре. Весьма часто в качестве такой температуры рассчитывают среднюю температуру теплоноси-теля. Для теплоносителя с большей величиной теплоемкости массового расхода С, у которого температура в пределах теплообменника изменяется меньше, средняя температура теплоносителя рассчитывается по соотношению, если С12

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru (8.13)

Средняя температура второго теплоносителя определяется по формуле

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru Тепловой расчет рекуперативного теплообменного аппарата - student2.ru (8.14)

В случае поверочного расчета рабочая поверхность теплообменника известна, и необходимо определить температуры теплоносителей на выходе из аппарата и поток передаваемой теплоты.

Потенцируя соотношение (8.9), получим

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru

Вычтем из единицы левую и правую части этого равенства

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru

Если привести к общему знаменателю последнее соотношение, то получим

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru (8.15)

Из уравнения (8.1) при h=1 имеем Тепловой расчет рекуперативного теплообменного аппарата - student2.ru

Подстановка этого равенства в (8.15) после преобразований позволяет получить температуру первичного теплоносителя на выходе из теплообменника

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru (8.15)

где

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru (8.16)

Температура вторичного теплоносителя на выходе из прямоточного теплообменника может быть рассчитана по формуле Тепловой расчет рекуперативного теплообменного аппарата - student2.ru

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru (8.17)

Для противоточного теплообменника аналогично имеем

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru (8.18)

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru (8.19)

где

Тепловой расчет рекуперативного теплообменного аппарата - student2.ru (8.20)

После определения температур теплоносителей на выходе из теплообменного аппарата тепловой поток рассчитывается по формуле (8.1).

Наши рекомендации