Приведение общих уравнений прямой в пространстве к каноническому виду

Прямая L определяется двумя точками. Вместо точек можно задать одну точку Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru и направление, которое задается вектором Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru L и Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru ≠0.

Уравнение прямой, проходящей через данную точку Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru , и имеющий данный направляющий вектор Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru ,(Каноническое уравнение прямой)

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru

Это уравнение выражает условие параллельности вектора Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru и Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru ,где Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru - точка на прямой.

30.Эллипс: геометрическое определение, вывод и исследование канонического уравнения

Эллипсом называется геометрическое место точек, для которых сумма расстояний до двух фиксированных точек плоскости, называемых фокусами, есть постоянная величина, большая, чем расстояние между фокусами. Постоянную сумму расстояний произвольной точки эллипса до фокусов принято обозначать через 2а. Фокусы эллипса обозначают буквами Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru и Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru , расстояние между ними - через 2с. По определению эллипса Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru или Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru .

Пусть дан эллипс. Если оси декартовой прямоугольной системы координат выбраны так, что фокусы данного эллипса располагаются на оси абсцисс симметрично относительно начала координат, то в этой системе координат уравнение данного эллипса имеет вид

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru (1)

где Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru ; очевидно, Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru . Уравнение вида (1) называется каноническим уравнением эллипса.

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru

При указанном выборе системы координат оси координат являются осями симметрии эллипса, а начало координат - его центром симметрии (рис.). Оси симметрии эллипса называются просто его осями, центр симметрии - просто центром. Точки, в которых эллипс пересекает свои оси, называются его вершинами. На рис. Вершины эллипса суть точки A’, A, B’, B. Часто осями эллипса называются также отрезки A’A=2a и B’B=2b; вместе с тем отрезок ОА=а называют большой полуосью эллипса, отрезок OB=b - малой полуосью.

Если фокусы эллипса расположены на оси Оу (симметрично относительно начала координат), то уравнение эллипса имеет тот же вид (1), но в этом случае Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru ; следовательно, если мы желаем буквой а обозначать большую полуось, то в уравнении (1) нужно буквы а и b поменять местами. Однако для удобства формулировок задач мы условимся буквой а всегда обозначать полуось, расположенную на оси Ох, буквой b - полуось, расположенную на оси Оу, независимо от того, что больше, a или b. Если a=b, то уравнение (1) определяет окружность, рассматриваемую как частный случай эллипса.

Число

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru

где а - большая полуось, называется эксцентриситетом эллипса. Очевидно, Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru (для окружности Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru ). Если М(x; y) - произвольная точка эллипса, то отрезки Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru и Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru (рис.) называются фокальными радиусами точки М. Фокальные радиусы могут быть вычислены по формулам

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru , Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru .

Если эллипс определен уравнением (1) и Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru , то прямые

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru , Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru

(рис.) называются директрисами эллипса (если Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru , то директрисы определяются уравнениями Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru , Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru .

Каждая директриса обладает следующим свойством: если r - расстояние от произвольной точки эллипса до некоторого фокуса, d - расстояние от той же точки до односторонней с этим фокусом директрисы, то отношение r/d есть постоянная величина, равная эксцентриситету эллипса:

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru

Если две плоскости Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru и Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru образуют острый угол Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru , то проекциейй на плоскость Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru окружности радиуса a, лежащей на плоскости Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru , является эллипс с большой полуосью а; малая полуось b этого эллипса определяется по формуле

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru

Если круглый цилиндр имеет в качестве направляющей окружность радиуса b, то в сечении этого цилиндра плоскостью, наклоненной к оси цилиндра под острым углом Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru , будет эллипс, малая полуось которого рвна b; большая полуось а этого эллипса определяется по формуле

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru

31.Гипербола: геометрическое определение, вывод и исследование канонического уравнения

Гиперболой называется геометрическое место точек, для которых разность расстояний до двух фиксированных точек плоскости, называеых фокусами, есть постоянная величина; указанная разность берется по абсолютному значению и обозначается через2а. Фокусы гиперболы обозначают буквами Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru и Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru , расстояние между ними - через 2с. По определению гиперболы Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru , или Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru .

Пусть дана гипербола. Если оси декатовой прямоугольной системы координат выбраны так, что фокусы данной гиперболы располагаются на оси абсцисс симметрично относительно начала координат, то в этой системе координат уравнение гиперболы имеет вид

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru (1)

где Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru . Уравнение вида (1) называется каноническим уравнением гиперболы. При указанном выборе системы координат оси координат являются осями симметрии гиперболы, а начало координат - ее центром симметрии (рис.). Оси симметрии гиперболы называются просто ее осями, центр симметрии - центром гиперболы. Гипербола пересекает одну из своих осей; точки пересечения называются вершинами гиперболы. На рис. Вершины гиперболы суть точки А’ и А.

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru

Прямоугольник со сторонами 2а и 2b, расположенный симметрично относительно осей гиперболы и касающийся ее в вершинах, называется основным прямоугольником гиперболы.

Отрезки длиной 2a и 2b, соединяющие середины сторон основного прямоугольника гиперболы, также называют ее осями. Диагонали основного прямоугольника (неограниченно продолженного) являются асимптотами гиперболы, их уравнения суть

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru , Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru

Уравнение

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru (2)

определяет гиперболу, симметричную относительно координатных осей, с фокусами на оси ординат; уравнение (2), как и уравнение (1), называется каноническим уравнением гиперболы; в этом случае постоянная разность расстояний от произвольной точки гиперболы до фокусов равна 2b.

Две гиперболы, которые определяются уравнениями

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru , Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru

в одной и той же системе координат, называются сопряженными.

Гипербола с равными полуосями (a=b) называется равносторонней; ее каноническое уравнение имеет вид

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru или Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru

Число

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru

где а - расстояние от центра гиперболы до ее вершины, называется эксцентриситетом гиперболы. Очевидно, для любой гиперболы Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru . Если М(x; y) - произвольная точка гиперболы, то отрезки Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru и Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru (см. рис.) называются фокальными радиусами точки М. Фокальные радиусы точек правой ветви гиперболы вычисляются по формулам

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru , Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru ,

фокальные радиусы точек левой ветви - по формулам

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru , Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru .

Если гипербола задана уравнением (1), то прямые, определяемые уравнениями

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru , Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru ,

называются ее директрисами (см. рис.). Если гипербола задана уравнением (2), то директрисы определяются уравнениями

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru , Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru .

Каждая директриса обладает следующим свойством: если r - расстояние от произвольной точки гиперболы до некоторого фокуса, d - расстояние от той же точки до односторонней с этим фокусом директрисы, то отношение r/d есть постоянная величина, равная эксцентрисистету гиперболы:

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru .

32.Парабола: геометрическое определение, вывод и исследование канонического уравнения

Параболой называется геометрическое место точек, для каждой из которых расстояние до некоторой фиксированной точки плоскости, называемой фокусом, равно расстоянию до некоторой фиксированной прямой, называемой директрисой. Фокус параболы обозначается буквой F, расстояние от фокуса до директрисы - буквой р. Число р называется параметром параболы.

Пусть дана некоторая парабола. Введем декартову прямоугольную систему координат так, чтобы ось абсцисс проходила через фокус данной параболы перпендикулярно к директрисе и была направлена от директрисы к фокусу; начало координат расположим посередине между фокусом и директрисой (рис.). В этой системе координат данная парабола будет определяться уравнением

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru (1)

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru

Уравнение (1) называется каноническим уравнением параболы. В этой же системе координат директриса данной параболы имеет уравнение

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru .

Фокальный радиус произвольной точки М(x; y) параболы (то есть длина отрезка F(M) может быть вычислен по формуле

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru .

Парабола имеет одну ось симметрии, называемую осью параболы, с которой она пересекается в единственной точке. Точка пересечения параболы с осью называется ее вершиной. При указанном выше выборе координатной системы ось параолы совмещена с осью абсцисс, вершина находится в начале координат, вся парабола лежит в правой полуплоскости.

Если координатная система выбрана так, что ось абсцисс совмещена с осью параболы, начало координат - с вершиной, но парабола лежит в левой полуплоскости (рис.), то ее уравнение будет иметь вид

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru (2)

В случае, когда начало координат находится в вершине, а с осью совмещена ось ординат, парабола будет иметь уравнение

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru (3)

если она лежит в верхней полуплоскости (рис.), и

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru (4)

если в нижней полуплоскости (рис.)

Приведение общих уравнений прямой в пространстве к каноническому виду - student2.ru

Каждое из уравнений параболы (2), (3), (4), как и уравнение (1), называется каноническим.

Наши рекомендации