Понятие о потоке жидкости.

ГИДРОСТАТИКА

4. Уравнение Эйлера.

Выделим в жидкости некоторый объем. Полная сила, действующая на выделенный объем жидкости, равна интегралу

Понятие о потоке жидкости. - student2.ru (12)

от давления, взятому по поверхности рассматриваемого объема. Преобразуя его в интеграл по объему, имеем:

Понятие о потоке жидкости. - student2.ru (13)

Отсюда видно, что на каждый элемент объема dV жидкости действует со стороны окружающей его жидкости сила Понятие о потоке жидкости. - student2.ru . Другими словами, можно сказать, что на единицу объема жидкости действует сила -grad р.

Мы можем теперь написать уравнение движения элемента объема жидкости, приравняв силу -grad p произведению массы Понятие о потоке жидкости. - student2.ru единицы объема жидкости на ее ускорение Понятие о потоке жидкости. - student2.ru :

Понятие о потоке жидкости. - student2.ru . (14)

Стоящая здесь производная Понятие о потоке жидкости. - student2.ru определяет не изменение скорости жидкости в данной неподвижной точке пространства, а изменение скорости определенной передвигающейся в пространстве частицы жидкости. Эту производную надо выразить через величины, относящиеся к неподвижным в пространстве точкам. Для этого заметим, что изменение вскорости данной частицы жидкости в течение времени dt складывается из двух частей: из изменения скорости в данной точке пространства в течение времени dt и из разности скоростей (в один и тот же момент времени) в двух точках, разделенных расстоянием dr, пройденным рассматриваемой частицей жидкости в течение времени dt. Первая из этих частей равна

Понятие о потоке жидкости. - student2.ru (15)

где теперь производная Понятие о потоке жидкости. - student2.ru берется при постоянных х, у, z, т.е. в заданной точке пространства. Вторая часть изменения скорости равна

Понятие о потоке жидкости. - student2.ru (16)

Таким образом,

Понятие о потоке жидкости. - student2.ru (17)

или, разделив обе стороны равенства на dt,

Понятие о потоке жидкости. - student2.ru . (18)

Подставляя полученное соотношение в (14), находим:

Понятие о потоке жидкости. - student2.ru . (19)

Это и есть искомое уравнение движения жидкости, установленное впервые Л. Эйлером в 1775 г. Оно называется уравнением Эйлера является одним из основных уравнений гидродинамики.

Если жидкость находится в поле тяжести, то на каждую единицу ее объема действует еще сила Понятие о потоке жидкости. - student2.ru , где g есть ускорение силы тяжести. Эта сила должна быть прибавлена к правой стороне уравнения (14), так что (19) приобретает вид

Понятие о потоке жидкости. - student2.ru . (20)

При выводе уравнений движения мы совершенно не учитывал процессов диссипации энергии, которые могут иметь место в текущей жидкости вследствие внутреннего трения (вязкости) в жидкости и теплообмена между различными ее участками. Поэтому все излагаемое здесь относится только к таким движениям жидкостей и газов, при которых несущественны процессы теплопроводности и вязкости; о таком движении говорят как о движении идеальной жидкости.

Отсутствие теплообмена между отдельными участками жидкости (а также, конечно, и между жидкостью и соприкасающимися с нею окружающими телами) означает, что движение происходит адиабатически, причем адиабатически в каждом из участков жидкости. Таким образом, движение идеальной жидкости следует рассматривать как адиабатическое.

При адиабатическом движении энтропия каждого участка жидкости остается постоянной при перемещении последнего в пространстве. Обозначая посредством Понятие о потоке жидкости. - student2.ru энтропию, отнесенную к единице массы жидкости, мы можем выразить адиабатичность движения уравнением

Понятие о потоке жидкости. - student2.ru , (21)

где полная производная по времени означает, как и в (14), изменение энтропии заданного перемещающегося участка жидкости. Эту производную можно написать в виде

Понятие о потоке жидкости. - student2.ru . (22)

Это есть общее уравнение, выражающее собой адиабатичность движенияидеальной жидкости. С помощью Понятие о потоке жидкости. - student2.ru его можно написать в виде «уравнения непрерывности» для энтропии

Понятие о потоке жидкости. - student2.ru . (23)

Произведение psv представляет собой «плотность потока энтропии».

Надо иметь в виду, что обычно уравнение адиабатичности принимает гораздо более простую форму. Если, как это обычно имеет место, в некоторый начальный момент времени энтропия одинакова во всех точках объема жидкости, то она останется везде одинаковой и неизменной со временем и при дальнейшем движении жидкости. В этих случаях можно, следовательно, писать уравнение адиабатичности просто в виде

s = const. (24)

что мы и будем обычно делать в дальнейшем. Такое движение называют изэнтропическим.

Изэнтропичностью движения можно воспользоваться для того, чтобы представить уравнение движения (19) в несколько ином виде. Для этого воспользуемся известным термодинамическим соотношением

Понятие о потоке жидкости. - student2.ru , (25)

где w – тепловая функция единицы массы жидкости, Понятие о потоке жидкости. - student2.ru – удельный объем, а Т – температура. Поскольку s = const, мы имеем просто

Понятие о потоке жидкости. - student2.ru , (26)

и поэтому Понятие о потоке жидкости. - student2.ru . Уравнение (19) можно, следовательно, написать в виде

Понятие о потоке жидкости. - student2.ru . (27)

Полезно заметить еще одну форму уравнения Эйлера, в котором оно содержит скорость. Воспользовавшись известной формулой векторного анализа

Понятие о потоке жидкости. - student2.ru , (28)

можно написать (29) в виде

Понятие о потоке жидкости. - student2.ru . (29)

Если применить к обеим строкам этого уравнения операцию rot, то мы получим уравнение

Понятие о потоке жидкости. - student2.ru , (30)

содержащее только скорость.

К уравнениям движения надо добавить граничные условия, которые должны выполняться на ограничивающих жидкость стенках. Для идеальной жидкости это условие должно выражать собой просто тот факт, что жидкость не может проникнуть за твердую поверхность. Это значит, что на неподвижных стенках должна обращаться в нуль нормальная к поверхности стенки компонента скорости жидкости:

Понятие о потоке жидкости. - student2.ru (31)

(в общем же случае движущейся поверхности Понятие о потоке жидкости. - student2.ru должно быть равно соответствующей компоненте скорости поверхности).

На границе между двумя несмешивающимися жидкостями должны выполняться условие равенства давлений и условие равенства нормальных к поверхности раздела компонент скорости обеих жидкостей (причем каждая из этих скоростей равна скорости нормального перемещения самой поверхности раздела).

Как уже было указано, состояние движущейся жидкости определяется пятью величинами: тремя компонентами скорости Понятие о потоке жидкости. - student2.ru и, например, давлением р и плотностью Понятие о потоке жидкости. - student2.ru . Соответственно этому полная система гидродинамических уравнений должна содержать пять уравнений. Для идеальной жидкости этими уравнениями являются уравнения Эйлера, уравнение непрерывности и уравнение, выражающее адиабатичность движения.

1. Основная формула гидростатики.

Закон Паскаля. Понятие о напоре

Рассмотрим абсолютный покой несжимаемой жидкости в поле силы тяжести.

Уравнение Эйлера (20) принимает вид

Понятие о потоке жидкости. - student2.ru . (32)

Это уравнение описывает механическое равновесие жидкости. Если внешние силы вообще отсутствуют, то уравнение равновесия гласит просто Понятие о потоке жидкости. - student2.ru , т.е. р = const – давление одинаково во всех точках жидкости.

Уравнение (32) непосредственно интегрируется, если плотность жидкости можно считать постоянной вдоль всего объекта, т.е. если не происходит заметного сжатия жидкости под действием внешнего поля. Выберем оси координат, как показано на рис. 2. Поскольку из массовых сил действует только сила тяжести, то

Понятие о потоке жидкости. - student2.ru ; Понятие о потоке жидкости. - student2.ru . (33)

Понятие о потоке жидкости. - student2.ru Таким образом, искомая функция р зависит только от одной переменной z; интегрирование последнего равенства дает

Понятие о потоке жидкости. - student2.ru , (34)

где С – произвольная постоянная.

Эта формула выражает гидростатический закон распределения давления, состоящий в том, что в тяжелой (подверженной действию силы тяжести) несжимаемой жидкости давление линейно зависит от вертикальной координаты.

Чтобы найти постоянную в уравнении (34), надо использовать какое-нибудь граничное условие. Пусть, например, жидкость покоится в резервуаре (см. рис.2) причем на ее свободной поверхности давление равно р0. Будем это давление называть внешним.

Для точек свободной поверхности можем записать

Понятие о потоке жидкости. - student2.ru . (35)

Вычитая это отношение из уравнения (34), находим

Понятие о потоке жидкости. - student2.ru (36)

или, обозначив через Понятие о потоке жидкости. - student2.ru заглубление точки М под свободную поверхность, получим основную формулу гидростатики

Понятие о потоке жидкости. - student2.ru , (37)

где величина Понятие о потоке жидкости. - student2.ru называется весовым давлением.

Из этой формулы ясно, что всякое изменение внешнего давления Понятие о потоке жидкости. - student2.ru вызывает изменение давления во всех точках покоящейся жидкости на ту же величину. Этот результат известен как закон Паскаля.

Если жидкость находится в ненапряженном состоянии, т.е. в ней отсутствуют напряжения сжатия, то Понятие о потоке жидкости. - student2.ru . Значения Понятие о потоке жидкости. - student2.ru , отсчитанные от нуля, называют иногда абсолютным давлением.

В технике весьма часто представляет интерес избыток давления р над атмосферным Понятие о потоке жидкости. - student2.ru , который называется избыточным или манометрическим давлением. По определению

Понятие о потоке жидкости. - student2.ru . (38)

Для произвольной точки М, заглубленной на высоту h под свободную поверхность, избыточное давление равно

Понятие о потоке жидкости. - student2.ru ; (39)

отсюда видно, что избыточное давление совпадает с весовым, если давление на свободной поверхности равно атмосферному ( Понятие о потоке жидкости. - student2.ru ).

Если все члены формулы (37) разделить на величину Понятие о потоке жидкости. - student2.ru , то они приобретут линейную размерность:

Понятие о потоке жидкости. - student2.ru . (40)

Отсюда следует, что каждому давлению р можно поставить в соответствие линейную величину Понятие о потоке жидкости. - student2.ru , которая представляет собой величину столба жидкости, создающего в своем основании данное давление. Это наглядно иллюстрируется схемой, показанной на рис.3. Если на свободной поверхности в резервуаре давление Понятие о потоке жидкости. - student2.ru , а из запаянной сверху трубки А удален воздух, то под действием давления Понятие о потоке жидкости. - student2.ru жидкость в трубке поднимется над точкой М на некоторую высоту Понятие о потоке жидкости. - student2.ru , называемую приведенной высотой. Принимая приближенно, что на свободной поверхности в трубке давление равно нулю, согласно (37) можно записать Понятие о потоке жидкости. - student2.ru . Следовательно, приведенная высота есть высота столба жидкости, на свободной поверхности которого давление равно нулю, а в основании – данному давлению жидкости.

Для трубки П, открытой в атмосферу и называемой пьезометром, получим

Понятие о потоке жидкости. - student2.ru , (41)

откуда

Понятие о потоке жидкости. - student2.ru ; (42)

 
  Понятие о потоке жидкости. - student2.ru

величину Понятие о потоке жидкости. - student2.ru называют пьезометрической высотой.

Если давление в точках какого-либо объема жидкости меньше атмосферного ( Понятие о потоке жидкости. - student2.ru ), то такое состояние называется вакуумом. Для его характеристики вводится понятие вакуумметрического давления ( Понятие о потоке жидкости. - student2.ru ), под которым подразумевается недостаток данного давления до атмосферного

Понятие о потоке жидкости. - student2.ru . (43)

Соответствующая высота называется вакуумметрической:

Понятие о потоке жидкости. - student2.ru . (44)

На рис. 3 и 4 показаны вакуумметрические высоты для случаев вакуума в капельной жидкости и газе. Давление измеряется в единицах силы, отнесенных к единице площади. В системе СИ единицей давления служит Н/м2 = Па (паскаль), а в технической системе – кгс/см2 = ат (техническая атмосфера). Наряду с этими, как следует из (42) и (44), давление можно, измерять в единицах длины столба данной жидкости.

Общей формулой перевода единиц давления в линейные единицы является

Понятие о потоке жидкости. - student2.ru . (45)

При выражении давления высотой столба жидкости чаще всею применяют метры водяного столба, миллиметры ртутного столба и миллиметры спиртового столба.

Гидростатический закон распределения давления, выраженный формулой (34), справедлив, очевидно, для любого положения координатной плоскости хОу. Эту плоскость называют плоскостью сравнения, а величину Понятие о потоке жидкости. - student2.ru – гидростатическим напором. Величину Понятие о потоке жидкости. - student2.ru , где Понятие о потоке жидкости. - student2.ru – избыточноедавление, называют пьезометрическим напором. Из формулы (34) следует, что напоры Понятие о потоке жидкости. - student2.ru и Понятие о потоке жидкости. - student2.ru постоянны для всех точек данной массы покоящейся жидкости.

2. Силы давления жидкости на твердые поверхности

В общем случае воздействие жидкости на твердую поверхность S сводится к сумме элементарных сил Понятие о потоке жидкости. - student2.ru , действующих на малых площадках dS, составляющих эту поверхность (рис. 5).

Если Понятие о потоке жидкости. - student2.ru – единичный вектор нормали к поверхности S, внешней к объему жидкости, а Понятие о потоке жидкости. - student2.ru – давление на площадке dS, то сила Понятие о потоке жидкости. - student2.ru .

Суммируя систему сил Понятие о потоке жидкости. - student2.ru , получаем выражение для главного вектора

Понятие о потоке жидкости. - student2.ru , (46)

называемого силой давления жидкости на поверхность S, и выражение для главного момента

Понятие о потоке жидкости. - student2.ru Понятие о потоке жидкости. - student2.ru , (47)

где Понятие о потоке жидкости. - student2.ru – радиус-вектор площадки Понятие о потоке жидкости. - student2.ru относительно центра приведения системы сил.

Рассмотрим несколько частных случаев.

2.1. Равномерное давление на плоскую стенку (р=const., п=const).

В этом случае суммируемые векторы Понятие о потоке жидкости. - student2.ru составляют систему параллельных и одинаково направленных сил. Такая система всегда может быть сведена только к силе давления Понятие о потоке жидкости. - student2.ru . При р = const и n = const из выражения (46) получаем

Понятие о потоке жидкости. - student2.ru . (48)

Линия действия силы Понятие о потоке жидкости. - student2.ru проходит через центр тяжести площади S.

Равномерное давление может создаваться покоящимся газом, так как благодаря малой его плотности можно пренебречь действием массовых сил и считать давление одинаковым во всех точках газа.

Равномерное давление может создаваться и капельной жидкостью, например, при ее воздействии на горизонтальные площадки, в случае абсолютного покоя или движения сосуда с ускорением вверх или вниз.

Величина силы Понятие о потоке жидкости. - student2.ru при равномерном распределении давления не зависит от ориентации плоской стенки S в пространстве и вычисляется по формуле Понятие о потоке жидкости. - student2.ru .

Например, для схемы на рис. 6 давление на дне Понятие о потоке жидкости. - student2.ru , а сила Понятие о потоке жидкости. - student2.ru . Заметим, что сила давления на дно не зависит от формы сосуда (гидростатический парадокс).

2.2. Сила равномерного давления на криволинейную стенку ( Понятие о потоке жидкости. - student2.ru , Понятие о потоке жидкости. - student2.ru )

В этом случае элементарные силы Понятие о потоке жидкости. - student2.ru имеют разные направления. Главный вектор Понятие о потоке жидкости. - student2.ru системы вычисляется через свои проекции. Чтобы найти его проекцию Понятие о потоке жидкости. - student2.ru на ось х , проектируем на эту ось векторы Понятие о потоке жидкости. - student2.ru (рис.7).

 
  Понятие о потоке жидкости. - student2.ru

Понятие о потоке жидкости. - student2.ru ,

где Понятие о потоке жидкости. - student2.ru – единичный вектор оси x; Понятие о потоке жидкости. - student2.ru – проекция площадки dS на плоскость, нормальную оси х. Искомая величина Понятие о потоке жидкости. - student2.ru при Понятие о потоке жидкости. - student2.ru

Понятие о потоке жидкости. - student2.ru . (49)

Линия действия силы Понятие о потоке жидкости. - student2.ru проходит через центр тяжести площади проекции Понятие о потоке жидкости. - student2.ru . Таким образом, величина проекции на направлении оси x силы равномерного давления р на криволинейную поверхность S равна произведению давления и площади проекции Sx этой криволинейной поверхности на плоскость. нормальной оси х. Если такие проекции на три взаимно ортогональные оси пересекаются в одной точке, то система сил Понятие о потоке жидкости. - student2.ru может быть сведена только к силе давления, величина которой

Понятие о потоке жидкости. - student2.ru , (50)

а направление определяется направляющими косинусами

Понятие о потоке жидкости. - student2.ru ; Понятие о потоке жидкости. - student2.ru ; Понятие о потоке жидкости. - student2.ru . (51)

Если составляющие не пересекаются в одной точке, система сводится к силе и моменту.

2.3. Сила неравномерного давления на плоскую стенку ( Понятие о потоке жидкости. - student2.ru , Понятие о потоке жидкости. - student2.ru ).

Систему элементарных сил Понятие о потоке жидкости. - student2.ru , одинаковых по направлению, но различных по величине, можно свести в данном случае к одной силе давления

Понятие о потоке жидкости. - student2.ru , (52)

Понятие о потоке жидкости. - student2.ru где S – площадь стенки.

Величина этой силы

Понятие о потоке жидкости. - student2.ru (53)

зависит от закона распределения давления Р по площади S. При воздействии на S капельной жидкости эти законы могут быть различными. Их конкретный вид зависит от ориентации площадки и действующих на жидкость массовых сил при абсолютном и относительном покое.

Вычислим силу Понятие о потоке жидкости. - student2.ru для плоской стенки, наклоненной к горизонту под углом a и подверженной воздействию тяжелой жидкости, находящейся в состоянии абсолютного покоя (рис. 8).

Определим результирующую силу избыточных давлений Понятие о потоке жидкости. - student2.ru , которые создаются внешним избыточным Понятие о потоке жидкости. - student2.ru и весовым Понятие о потоке жидкости. - student2.ru давлениями. Заменим внешнее давление Понятие о потоке жидкости. - student2.ru воздействием эквивалентного слоя жидкости, толщина, которого Понятие о потоке жидкости. - student2.ru определяется высотой поднятия жидкости в пьезометре Понятие о потоке жидкости. - student2.ru . Таким образом, внешнее давление из рассмотрения исключается, и свободная поверхность СП заменяется пьезометрической плоскостью ПП. Продолжим плоскость стенки до пересечения с пьезометрической плоскостью. Вдоль линии их пересечения направим ось х, а ось у расположим в плоскости стенки. Затем для наглядности повернем плоскость стенки на 90° вокруг оси у и совместим стенку с плоскостью чертежа.

Величину силы вычислим по формуле (53):

Понятие о потоке жидкости. - student2.ru .

В рассматриваемом случае (см. рис. 8) давление

Понятие о потоке жидкости. - student2.ru , (54)

что при подстановке в формулу (53) дает

Понятие о потоке жидкости. - student2.ru .

Интеграл Понятие о потоке жидкости. - student2.ru представляет собой статический момент площади S относительно оси Ох, равный, как известно, произведению S на координату Понятие о потоке жидкости. - student2.ru ее центра тяжести.

Поэтому

Понятие о потоке жидкости. - student2.ru . (55)

Формула (55) может быть записана в двух видах

Понятие о потоке жидкости. - student2.ru , (56)

где Понятие о потоке жидкости. - student2.ru – избыточное давление в центре тяжести площадиS, или

Понятие о потоке жидкости. - student2.ru . (57)

Согласно (56) величина силы избыточного давления покоящейся жидкости на плоскую стенку равна произведению площади стенки на избыточное давление в ее центре тяжести.

Вектор силы Понятие о потоке жидкости. - student2.ru направлен по нормали к стенке S:

Понятие о потоке жидкости. - student2.ru ,

а линия действия этой силы пересекает стенку в некоторой точке D, называемой центром давления. Для отыскания координат этой точки ( Понятие о потоке жидкости. - student2.ru ) используем теорему о равенстве момента равнодействующей и суммы моментов составляющих, которая в данном случае выражается уравнением

Понятие о потоке жидкости. - student2.ru , (58)

где Понятие о потоке жидкости. - student2.ru и Понятие о потоке жидкости. - student2.ru – радиус-векторы соответственно центра давления D и произвольной точки (ху) площади S.

По правилам составления проекций векторного произведения находим

Понятие о потоке жидкости. - student2.ru ; Понятие о потоке жидкости. - student2.ru .

Учитывая выражения (54) и (55), получим

Понятие о потоке жидкости. - student2.ru (59)

Более удобные выражения для Понятие о потоке жидкости. - student2.ru и Понятие о потоке жидкости. - student2.ru получим, если воспользуемся теоремой о соотношении между моментами второй степени, взятыми относительно параллельных осей

Понятие о потоке жидкости. - student2.ru ; Понятие о потоке жидкости. - student2.ru ,

где Понятие о потоке жидкости. - student2.ru – оси координат, проходящие через центр тяжести С площадки S параллельно осям х и у; Понятие о потоке жидкости. - student2.ru и Понятие о потоке жидкости. - student2.ru – координаты центра тяжести С в системе xу; Понятие о потоке жидкости. - student2.ru – центробежный момент площади S относительно осей х и у ; Понятие о потоке жидкости. - student2.ru – момент инерции площади S относительно оси х (см. рис. 8). Окончательно,

Понятие о потоке жидкости. - student2.ru ; Понятие о потоке жидкости. - student2.ru . (60)

Вторая из формул (60) показывает, что центр давления расположен ниже центра тяжести на величину Понятие о потоке жидкости. - student2.ru .

Возвращаясь к формуле (57), заметим, что силу давления в рассматриваемом случае можно получить, складывая независимо вычисленные две силы: Понятие о потоке жидкости. - student2.ru и Понятие о потоке жидкости. - student2.ru , где Понятие о потоке жидкости. - student2.ru – сила внешнего избыточного давления, Понятие о потоке жидкости. - student2.ru – сила весового давления. При таком способе определения силы Понятие о потоке жидкости. - student2.ru следует помнить, что линии действия сил Понятие о потоке жидкости. - student2.ru и Понятие о потоке жидкости. - student2.ru не совпадают, и центр давления D определяется линией действия суммарной силы Понятие о потоке жидкости. - student2.ru .

2.4. Неравномерное давление на криволинейную твердую поверхность ( Понятие о потоке жидкости. - student2.ru , Понятие о потоке жидкости. - student2.ru ) может быть создано тяжелой жидкостью при абсолютном или относительном покое. Элементарные силы Понятие о потоке жидкости. - student2.ru составляют в этом случае самую общую систему, которая должна сводиться к силе давления Понятие о потоке жидкости. - student2.ru (46) и моменту Понятие о потоке жидкости. - student2.ru (47). Однако существуют частные случаи,, когда система сводится к одной силе давления Понятие о потоке жидкости. - student2.ru , например, если линии действия элементарных сил Понятие о потоке жидкости. - student2.ru пересекаются в одной точке (сферическая стенка).

Рассмотрим криволинейную поверхность S, находящуюся под воздействием внешнего избыточного давления Понятие о потоке жидкости. - student2.ru и весового давления Понятие о потоке жидкости. - student2.ru (рис.9). Как было показано в предыдущем пункте, задачу отыскания силы давления можно расчленить, определяя раздельно силы весового и внешнего давлений. Эту же задачу можно свести к задаче об определении только весового давления, заменив внешнее давление действием эквивалентного слоя жидкости.

 
  Понятие о потоке жидкости. - student2.ru

Силу весового давления Понятие о потоке жидкости. - student2.ru определим по ее проекциям. Горизонтальная проекция

Понятие о потоке жидкости. - student2.ru ,

где Понятие о потоке жидкости. - student2.ru – проекция площадки dS на вертикальную плоскость, нормальную к оси х. Последний интеграл представляет собой статический момент площади Понятие о потоке жидкости. - student2.ru относительно оси y. Следовательно,

Понятие о потоке жидкости. - student2.ru , (61)

где Понятие о потоке жидкости. - student2.ru – координата центра тяжести площади Понятие о потоке жидкости. - student2.ru .

Аналогично получим

Понятие о потоке жидкости. - student2.ru , (62)

где Понятие о потоке жидкости. - student2.ru – площадь проекции криволинейной поверхности на плоскость, нормальную оси y.

Таким образом, чтобы вычислить горизонтальную проекцию Понятие о потоке жидкости. - student2.ru силы весового давления на криволинейную поверхность, следует площадь проекции Понятие о потоке жидкости. - student2.ru этой поверхности на плоскость, нормальную к рассматриваемой горизонтальной оси, умножить на давление в центре тяжести площади Понятие о потоке жидкости. - student2.ru .

Проекция силы весового давления на вертикальную ось определится соотношением

Понятие о потоке жидкости. - student2.ru , (63)

где Понятие о потоке жидкости. - student2.ru – проекция на плоскость х0у поверхности S.

Последний интеграл представляет собой объем тела Понятие о потоке жидкости. - student2.ru , ограниченного поверхностью S, цилиндрической боковой поверхностью Понятие о потоке жидкости. - student2.ru с вертикальными образующими и проекцией Понятие о потоке жидкости. - student2.ru криволинейной поверхности S на свободную поверхность жидкости. Это тело называется телом давления, а величина Понятие о потоке жидкости. - student2.ru есть вес жидкости в его объеме.

 
  Понятие о потоке жидкости. - student2.ru

Таким образом, вертикальная проекция силы весового давления на криволинейную поверхность равна весу жидкости в объеме тела давления.

Величина Понятие о потоке жидкости. - student2.ru силы Понятие о потоке жидкости. - student2.ru определится формулой

Понятие о потоке жидкости. - student2.ru , (64)

а направление линии ее действия – направляющими косинусами

Понятие о потоке жидкости. - student2.ru ; Понятие о потоке жидкости. - student2.ru ; Понятие о потоке жидкости. - student2.ru . (65)

Если Понятие о потоке жидкости. - student2.ru , Понятие о потоке жидкости. - student2.ru и Понятие о потоке жидкости. - student2.ru пересекаются в одной точке, то система сводится к силе давления, проходящей через эту точку.

Возможны два случая расположения криволинейной поверхности (рис. 10 а и б) под уровнем жидкости. В первом случае жидкость расположена над твердой поверхностью; тело давления заполнено жидкостью и считается положительным, а вертикальная составляющая силы направлена вниз. Во втором случае тело давления не заполнено жидкостью и считается отрицательным; вертикальная сила давления направлена вверх.

Если криволинейная поверхность S замкнута и полностью погружена под уровень абсолютно покоящейся жидкости (рис. 11), то воздействие жидкости сводится к одной вертикальной силе. Действительно, для любой горизонтальной оси существуют две противоположно направленные и равные по величине силы, действующие на тело; поэтому результирующая горизонтальных сил равна нулю. Чтобы найти вертикальную силу, проектируем S на свободную поверхность жидкости. Проектирующие вертикали отметят на поверхности тела замкнутую линию l, которая делит поверхность на две части Понятие о потоке жидкости. - student2.ru и Понятие о потоке жидкости. - student2.ru . Для верхней части Понятие о потоке жидкости. - student2.ru тело давления положительно и соответствующая ему сила направлена вертикально вниз, а для нижней Понятие о потоке жидкости. - student2.ru – тело давления отрицательно и сила направлена вверх. Обозначив объемы этих тел давления соответственно через Понятие о потоке жидкости. - student2.ru и Понятие о потоке жидкости. - student2.ru , найдем величину результирующей вертикальной силы А:

Понятие о потоке жидкости. - student2.ru , (66)

где Понятие о потоке жидкости. - student2.ru – объем тела.

Таким образом, сила давления покоящейся жидкости на погруженное в нее тело направлена вертикально вверх и равна весу жидкости в объеме тела. Этот результат составляет содержание закона Архимеда: сила А называется архимедовой или гидростатической подъемной силой. Если G – вес тела, то его плавучесть определяется соотношением сил А и G. При Понятие о потоке жидкости. - student2.ru тело тонет, при Понятие о потоке жидкости. - student2.ru – всплывает, при G = А – плавает в состоянии безразличного равновесия. Следует иметь в виду, что линии действия сил G и А могут не совпадать, так как линия действия веса G проходит через центр тяжести тела, а линия действия архимедовой силы А – через центр его объема. При неравномерном распределении плотности тела может появиться момент, способствующий опрокидыванию тела.

В заключение отметим, что сила давления жидкости по криволинейной поверхности в случаях относительного покоя может быть определена общим способом суммирования элементарных сил давления, применительно к заданной форме поверхности и условиям относительного покоя.

ГИДРОДИНАМИКА

Основные понятия гидродинамики

Основные элементы движения жидкости. Причинами движения жидкости являются действующие на нее силы: объемные или массовые силы (сила тяжести, инерционные силы) и поверхностные силы (давление, трение). В отличие от гидростатики, где основной величиной, характеризующей состояние покоя жидкости, является гидростатическое давление, которое определяется только положением точки в пространстве, т.е. Понятие о потоке жидкости. - student2.ru ,в гидродинамике основными элементами, характеризующими движение жидкости, будут два: гидродинамическое давление и скорость движения (течения) жидкости.

Гидродинамическое давление р – это внутреннее давление. развивающееся при движении жидкости. Скорость движения жидкости в данной точке и – это скорость перемещения находящейся в данной точке частицы жидкости, определяемая длиной пути l, пройденного этой частицей за единицу времени t.

В общем случае основные элементы движения жидкости р и и для данной точки зависят от ее положения в пространстве (координат точки) и могут изменяться во времени. Аналитически это положение гидродинамики записывается так:

Понятие о потоке жидкости. - student2.ru ,

Понятие о потоке жидкости. - student2.ru .

Задачей гидродинамики и является определение основных элементов движения жидкости р и u, установление взаимосвязи между ними и законов изменения их при различных случаях движения жидкости.

Траектория частицы.Если в массе движущейся жидкости взять какую-либо частицу жидкости и проследить ее путь за какой-то промежуток времени Понятие о потоке жидкости. - student2.ru (конечный, достаточно большой), то можно получить некоторую линию, выражающую геометрическое место этой точки в пространстве за время Понятие о потоке жидкости. - student2.ru .

Понятие о потоке жидкости. - student2.ru Линия тока. Если в массе движущейся жидкости в данный момент времени t взять какую-либо точку 1(рис. 12), то можно в этой точке построить вектор скорости и1, выражающий величину и направление скорости движения частицы жидкости в данной точке 1в этот момент времени.

В тот же момент времени t можно взять и другие точки в движущейся жидкости, например, точки 2, 3, 4,. ..... в которых также можно построить векторы скоростей u2, u3, и4,… выражающие скорость движения других частиц жидкости в тот же момент.

Можно выбрать точки 1, 2, 3, 4. . . и провести через них плавную кривую, к которой векторы скоростей будут всюду касательны. Эта линия и называется линией тока.

Таким образом, линией тока называется линия, проведенная через ряд точек в движущейся жидкости так, что в данный момент времени векторы скорости частиц жидкости, находящихся в этих точках, направлены по касательной к этой линии. В отличие от траектории, которая показывает путь движения одной частицы жидкости за определенный промежуток времени Понятие о потоке жидкости. - student2.ru , линия тока соединяет разные частицы и дает некоторую мгновенную характеристику движущейся жидкости в момент времени t. Через заданную точку в данный момент времени можно провести только одну линию тока.

Если в данных точках движущейся жидкости величина и направление скорости и гидродинамическое давление с течением времени не изменяются (такое движение называется установившимся), то и линия тока, и траектория частицы, оказавшейся на ней, совпадают и со временем не изменяются. В этом случае траектории частиц являются и линиями тока.

Понятие о потоке жидкости. - student2.ru Элементарная струйка. Если в движущейся жидкости выделить весьма малую элементарную площадку Понятие о потоке жидкости. - student2.ru , перпендикулярную направлению течения, и по контуру ее провести линии тока, то полученная поверхность называется трубкой тока, а совокупность линий тока, проходящих сплошь через площадку Понятие о потоке жидкости. - student2.ru , образует так называемую элементарную струйку (рис. 13).

Элементарная струйка характеризует состояние движения жидкости в данный момент времени t. При установившемся движении элементарная струйка имеет следующие свойства:

1. форма и положение элементарной струйки с течением времени остаются неизменными, так как не изменяются линии тока;

2. приток жидкости в элементарную струйку и отток из нее через боковую поверхность невозможен, так как по контуру элементарной струйки скорости направлены по касательной;

3. скорость и гидродинамическое давление во всех точках поперечного лечения элементарной струйки можно считать одинаковым ввиду малости площади Понятие о потоке жидкости. - student2.ru .

Поток. Совокупность элементарных струек движущейся жидкости, проходящих через площадку достаточно больших размеров, называется потоком жидкости. Поток ограничен твердыми поверхностями, по которым происходит движение жидкости (труба), и атмосферой (река, лоток, канал и т.п.).

Понятие о потоке жидкости.

Гидравлические элементы потока. Живым сечением называется поверхность в пределах потока, проведенная перпендикулярно к линиям тока (элементарным струйкам). В общем случае эта поверхность криволинейная (на рис. 14 поверхность ABC). Однако в большинстве случаев практической гидравлики поток жидкости можно представить параллельно-струйным или с очень малым углом расхождения струек, а за живое сечение принять плоское поперечное сечение потока (на рис. 14 плоскость АС). Площадь живого сечения обозначается Понятие о потоке жидкости. - student2.ru буквой s.

Смоченным периметром называется длина части периметра живого сечения, в пределах которой поток соприкасается с твердыми внешними стенками. Смоченный периметр обозначают буквой П.

Гидравлическим радиусом называется отношение площади живого сечения к смоченному периметру:

Понятие о потоке жидкости. - student2.ru . (67)

На рис. 15 приведены примеры поперечных сечений потока: а) трапецеидальное; б) прямоугольное; в) круговое.

Для кругового сечения, заполненного жидкостью полностью (рис. 15, в): Понятие о потоке жидкости. - student2.ru ; Понятие о потоке жидкости. - student2.ru ; Понятие о потоке жидкости. - student2.ru .

Расход жидкости и средняя скорость. Расходом жидкости называется количество жидкости, проходящей через данное живое сечение потока в единицу времени.

Расход потока жидкости обозначают Q, а элементарной струйки – Понятие о потоке жидкости. - student2.ru . Единицами измерения расхода являются: м3/сек, м3/ч или л/сек, л/ч и др.

 
  Понятие о потоке жидкости. - student2.ru

Рассмотрим элементарную струйку (рис. 13) с поперечным сечением Понятие о потоке жидкости. - student2.ru и постоянной скоростью движения частицы жидкости и. Через промежуток времени t частицы переместятся из сечения 1-1 в сечение 2-2 на расстояние l. При этом через сечение 1-1 пройдет элементарный объем жидкости Понятие о потоке жидкости. - student2.ru . Разделив обе части уравнения на t, получим

Понятие о потоке жидкости. - student2.ru ,

но Понятие о потоке жидкости. - student2.ru –расход элементарной струйки (объем, прошедший через элемент живого сечения 1-1 в единицу времени); Понятие о потоке жидкости. - student2.ru –скорость движения частиц жидкости (путь, пройденный частицами жидкости за единицу времени).

Отсюда

Понятие о потоке жидкости. - student2.ru Понятие о потоке жидкости. - student2.ru , (67a)

т. е. расход элементарной струйки равен площади ее поперечного сечения, умноженной на скорость в этом сечении. Поток жидкости в данном живом сечении представляет совокупность (сумму) большого числа элементарных струек, заполняющих сплошь площадь живого сечения, поэтому для определения расхода потока через живое сечение s необходимо взять сумму расходов Понятие о потоке жидкости. - student2.ru элементарных струек, т.е.

Понятие о потоке жидкости. - student2.ru . (67б)

В общем случае, чтобы воспользоваться формулой (67б) для определения расхода потока, надо знать закон распределения скоростей по живому сечению, который очень сложен или вообще неизвестен. Поэтому для практических расчетов вводится понятие средней скорости потока.

На рис. 16 представлен график (эпюра) распределения действительных скоростей в точках живого сечения потока, из которого видно, что скорости по сечению распределяются неравномерно. При действительных скоростях через живое сечение проходит определенный расход Q. Можно найти некоторую постоянную для всех точек сечения фиктивную скорость, при которой через данное сечение проходил бы тот же самый расход, что и при действительных скоростях движения жидкости. Эта скорость v будет средней из действительных скоростей. Подставляя в формулу (67б) скорость v получим Понятие о потоке жидкости. - student2.ru , но Понятие о потоке жидкости. - student2.ru , Понятие о потоке жидкости. - student2.ru ,поэтому

Понятие о потоке жидкости. - student2.ru , (68)

т. е. расход жидкости в данном сечении потока равен произведению средней скорости движения жидкости, умноженной на площадь живого сечения.

Итак, средней скоростью потока в данном сечении v называется такая одинаковая для всех точек живого сечения скорость движения жидкости, при которой через это живое сечение проходит тот же расход Q, что и при действительных скоростях движения жидкости и.

Из формулы (68) можно написать

Понятие о потоке жидкости. - student2.ru , (68/)

Понятие о потоке жидкости. - student2.ru . (68//)

Формулы (68), (68') и (68") используются при решении основных гидравлических задач, связанных с потоком жидкости. Их следует четко знать и запомнить.

Виды движения жидкости

Установившимся стационарным движением жидкости называется такое движение, при котором в каждой данной точке основные элементы движения жидкости – скорость движения и и гидродинамическое давление р не изменяются с течением времени, т.е. зависят только от координат точки. Аналитически это условие запишется так:

Понятие о потоке жидкости. - student2.ru и Понятие о потоке жидкости. - student2.ru .

Неустановившимся (нестационарным) движением жидкости называется такое движение, при котором в каждой данной точке основные элементы движения жидкости – скорость движения и и гидродинамическое давление р – постоянно изменяются, т.е. зависят не только от положения точки в пространстве, но и от времени Понятие о потоке жидкости. - student2.ru . Аналитически это условие запишется так:

Понятие о потоке жидкости. - student2.ru и Понятие о потоке жидкости. - student2.ru .

Примером установившегося движения может быть: движение жидкости в канале, в реке при неизменных глубинах, истечение жидкости из резервуара при постоянном уровне жидкости в нем и др. Неустановившееся движение – это движение жидкости в канале или реке при переменном уровне или при опорожнении резервуара, когда уровень жидкости в нем непрерывно изменяется.

В дальнейшем будет изучаться главным образом установившееся движение жидкости и в отдельных случаях будут разбираться примеры неустановившегося движения.

Установившееся движение в свою очередь подразделяется на равномерное и неравномерное.

Равномерным называется такое установившееся движение, при котором живые сечения вдоль потока не изменяются: в этом случае Понятие о потоке жидкости. - student2.ru ; средние скорости по длине потока также не изменяются, т.е. Понятие о потоке жидкости. - student2.ru . Примером равномерного движения является: движение жидкости в цилиндрической трубе, в канале постоянного сечения при одинаковых глубинах.

Установившееся движение называется неравномерным, когда распределение скоростей в различных поперечных сечениях неодинаково; при этом средняя скорость и площадь поперечного сечения потока могут быть и достоянными вдоль потока. Примером неравномерного движения может быть движение жидкости в конической трубе или в речном русле переменной ширины.

Напорным называется движение жидкости, при котором поток полностью заключен в твердые стенки и не имеет свободной поверхности. Напорное движение происходит вследствие разности давлений и под действием силы тяжести. Примером напорного движения является движение жидкости в замкнутых трубопроводах (например, в водопроводных трубах).

Безнапорным называется движение жидкости, при котором поток имеет свободную поверхность. Примером безнапорного движения может быть: движение жидкости в реках, каналах, канализационных и дренажных трубах. Безнапорное движение происходит под действием силы тяжести и за счет начальной скорости. Обычно на поверхности безнапорного потока давление атмосферное.

Следует отметить еще один вид движения: свободную струю. Свободной струей называется поток, не ограниченный твердыми стенками. Примером может служить движение жидкости из пожарного брандспойта, гидромонитора, водопроводного крана, из отверстия резервуара и т. п. В этом случае движение жидкости происходит по инерции (т. е. за счет начальной скорости) и под действием силы тяжести.

Для упрощения выводов, связанных с изучением потока жидкости, вводится понятие о плавно изменяющемся движении жидкости.

Плавно изменяющимся называется такое движение жидкости, при котором кривизна струек незначительна (равна нулю или близка к нулю) и угол расхождения между струйками весьма мал (равен нулю или близок к нулю), т. е. практически поток жидкости мало отличается от параллельноструйного. Это предположение вполне оправдывается при изучении многих случаев движения жидкости в каналах, трубах и других сооружениях.

Отметим следующие свойства потока при плавно изменяющемся движении:

1. поперечные сечения потока плоские, нормальные к оси потока;

2. распределение гидродинамических давлений по сечению потока подчиняется закону гидростатики, т.е. гидродинамические давления по высоте сечения распределяются по закону прямой. Это свойство легко можно доказать, если внутри потока выделить частицу жидкости и спроектировать все действующие на нее силы на плоскость живого сечения. Вследствие того, что скорости и ускорения в этом случае будут перпендикулярны сечению, силы инерции в уравнение не войдут; поэтому уравнение равновесия и закон распределения давления в плоскости живого сечения не будет отличаться от такового для жидкости, находящейся в покое;

3. удельная потенциальная энергия (т. е. потенциальная энергия единицы веса жидкости) по отношению к некоторой плоскости сравнения для всех точек данного сечения потока жидкости есть величина постоянная.

Наши рекомендации