Классическое определение вероятности события
0 вариант
Задача 1) Из букв разрезной азбуки выкладывается слово «книга», затем буквы этого слова тщательно перемешиваются и снова выкладываются одна за другой в некотором порядке. Найти вероятность того, то снова получится слово «книга».
Задача 2) Имеются 12 единиц товара в одинаковых упаковках. Известно, что в четырех из них товар первого сорта. Случайным образом отбирают 3 единицы товара. Вычислить вероятность того, что среди них:
а) только упаковки с товаром первого сорта;
б) ровно одна упаковка с товаром первого сорта.
1 вариант
Задача 1) Из 20 яблок, находящихся в корзине, 6 яблок – сорта «шафран». Найти вероятность того, что взятое из корзины яблоко не принадлежит сорту «шафран».
Задача 2) В туристической группе 15 человек, среди которых только 5 человек хорошо говорят по-английски. В Лондоне группу случайным образом расселили в два отеля (3 человека и 12 человек соответственно). Вычислите вероятность того, что из членов группы в первом отеле:
а) все туристы говорят хорошо по-английски;
б) только один турист хорошо говорит по-английски.
2 вариант
Задача 1) В магазин поступило 12 компьютеров, среди которых три имеют скрытые дефекты. Найти вероятность того, что выбранный наудачу компьютер не имеет скрытых дефектов.
Задача 2) В коробке 25 одинаковых по форме шоколадных конфет. Известно, что 15 штук из них сорта «Мишка на Севере», а остальные — сорта «Красная Шапочка». Случайным образом выбирают 3 конфеты. Вычислите вероятность того, что среди них: а). Все конфеты сорта «Мишка на Севере»; б). Только одна конфета этого сорта.
3 вариант
Задача 1) Автомат, изготавливающий однотипные детали, даёт в среднем 6% брака. Из большой партии взята наудачу одна деталь для контроля. Найти вероятность того, что она бракованная.
Задача 2) В упаковке 12 одинаковых книг. Известно, что каждая третья книга имеет дефект обложки. Случайным образом выбирают 3 книги. Вычислите вероятность того, что среди них:
а) все книги имеют дефект обложки;
б) только одна книга имеет этот дефект.
4 вариант
Задача 1) Игральная кость подбрасывается один раз. Найти вероятности следующих событий: А1 – выпало 5; А2 – выпало число, кратное трём; А3 – выпало число, меньшее 5.
Задача 2) К экзамену приготовлено 24 одинаковых ручки. Известно, что треть из них имеет фиолетовый стержень, остальные - синий стержень. Случайным образом отбирают три ручки. Вычислить вероятность того, что:
а) все ручки имеют фиолетовый стержень;
б) только одна ручка имеет фиолетовый стержень.
5 вариант
Задача 1) В урну помещают 4 белых и 6 черных шаров и хорошо их перемешивают.
а) Какова вероятность того, что извлеченный из урны шар – черный?
б) Из урны извлекают два шара. Какова вероятность того, что: 1) оба они – черные; 2) хотя бы один из шаров – черный; 3) извлеченные шары – разных цветов?
Задача 2) В нижней палате парламента 40 депутатов, среди которых первая партия имеет 20 представителей, вторая — 12 представителей, третья 5 представителей, а остальные считают себя независимыми. Случайным образом выбирают трех депутатов. Вычислите вероятность того, что среди них:
а) только представители первой партии,
б) только один депутат из первой партии.
6 вариант
Задача 1) Из коробки, в которой находятся 6 карандашей и 7 ручек, вынимают два предмета. Найти вероятности следующих событий: А1 – оба вынутых предмета – ручки; А2 – вынута хотя бы одна ручка; А3 – вынуты ручка и карандаш.
Задача 2) В ящике 18 одинаковых бутылок пива без этикеток. Известно, что треть из них «Жигулевское». Случайным образом выбирают 3 бутылки. Вычислите вероятность того, что среди них:
а) только пиво сорта «Жигулевское»;
б) ровно одна бутылка этого сорта.
7 вариант
Задача 1) Продано 120 билетов лотереи, из них 10 – выигрышные. Некто купил 2 билета. Найти вероятность того, что хотя бы один из его билетов окажется выигрышным.
Задача 2) В студенческой группе 20 девушек. Известно, что 5 из них не любят читать детективы. Случайным образом выбирают трех девушек и дарят им по детективу. Вычислите вероятность того, что:
а) все девушки оценят этот подарок;
б) только одна девушка оценит этот подарок.
8 вариант
Задача 1) Студент знает ответы на 10 вопросов из 20. Ему задают три вопроса, выбранные случайно из списка. Найти вероятность того, что он: а) ответит не на все вопросы; б) не ответит на все вопросы; в) ответит на один вопрос.
Задача 2) В коробке 30 одинаковых юбилейных монет. Известно, что 5 из них имеют нестандартный процент содержания золота. Случайным образом выбирают три монеты. Вычислите вероятность того, что:
а) все монеты имеют нестандартный процент содержания золота;
б) только одна монета имеет нестандартный процент содержания золота.
9 вариант
Задача 1) Среди 100 изделий 20 бракованных. Найти вероятность того, что среди пяти наугад взятых изделий будет три бракованных.
Задача 2) На витрине 32 одинаковых булочки. Известно, что среди них четверть булочек с изюмом, остальные с корицей. Случайным образом отбирают три булочки. Вычислите вероятность того, что:
а) все выбранные булочки с изюмом;
б) только одна булочка с изюмом.