Частные случаи приведения пространственной системы сил
Если при приведении системы сил к динамическому винту главный момент динамы оказался равным нулю, а главный вектор отличен от нуля, то это означает, что система сил приведена к равнодействующей, причем центральная ось является линией действия этой равнодействующей. Выясним, при каких условиях, относящихся к главному вектору Fp и главному моменту М0, это может быть. Поскольку главный момент динамы М* равен составляющей главного момента М0, направленной по главному вектору, то рассматриваемый случай М* =О означает, что главный момент М0 перпендикулярен главному вектору, т. е. /2 = Fo*M0 = 0. Отсюда непосредственно вытекает, что если главный вектор F0 не равен нулю, а второй инвариант равен нулю, Fo≠O, /2 = F0*M0=0, (7.9)то рассматриваемая система приводится к равнодействующей.
В частности, если для какого-либо центра приведения F0≠0, а М0 = 0, то это означает, что система сил приведена к равнодействующей, проходящей через данный центр приведения; при этом условие (7.9) также будет выполнено.Обобщим приведенную в главе V теорему о моменте равнодействующей (теорему Вариньона) на случай пространственной системы сил.Если пространственная система. сил приводится к равнодействующей, то момент равнодействующей относительно произвольной точки равен геометрической сумме моментов всех сил относительно той же точки. Пусть система сил имеет равнодействующую R и точка О лежит на линии действия этой равнодействующей. Если приводить заданную систему сил к этой точке, то получим, что главный момент равен нулю. Возьмем какой-либо другой центр приведения О1; (7.10) С другой стороны, на основании формулы (4.14) имеем Mo1=Mo+Mo1(Fo), (7.11) т.к М0 = 0. Сравнивая выражения (7.10) и (7.11) и учитывая, что в данном случае F0 = R, получаем (7.12).
Таким образом, теорема доказана.
Пусть при каком-либо выборе центра приведения Fo=О, М ≠0. Так как главный вектор не зависит от центра приведения, то он равен нулю и при любом другом выборе центра приведения. Поэтому главный момент тоже не меняется при перемене центра приведения, и, следовательно, в этом случае система сил приводится к паре сил с моментом, равным M0 .
Составим теперь таблицу всех возможных случаев приведения пространственной системы сил:
I2=Fo*Mo | Fo | Mo | Слечай приведения | |
I2≠0 | Fo≠0 | Mo≠0 | Динамический винт | |
I2=0 | Fo≠0 | Mo≠0;Mo=0 | Равнодействующая | |
I2=0 | Fo=0 | Mo≠0 | Пара сил | |
I2=0 | Fo=0 | Mo=0 | Система сил эквивалентна 0 |
Если все силы находятся в одной плоскости, например, в плоскости Оху, то их проекции на ось г и моменты относительно осей х и у будут равны нулю. Следовательно, Fz=0; Mox=0, Moy=0. Внося эти значения в формулу (7.5), найдем, что второй инвариант плоской системы сил равен нулю.Тот же результат мы получим и для пространственной системы параллельных сил. Действительно, пусть все силы параллельны оси z. Тогда проекции их на оси х и у и моменты относительно оси z будут равны 0. Fx=0, Fy=0, Moz=0
На основании доказанного можно утверждать, что плоская система сил и система параллельных сил не приводятся к динамическому винту.
11. Равновесие тела при наличии трения скольженияЕсли два тела / и // (рис. 6.1) взаимодействуют друг с другом, соприкасаясь в точке А, то всегда реакцию RA, действующую, например, со стороны тела // и приложенную к телу /, можно разложить на две составляющие: N.4, направленную по общей нормали к поверхности соприкасающихся тел в точке Л, и Т4, лежащую в касательной плоскости. Составляющая N.4 называется нормальной реакцией, сила Т л называется силой трения скольжения — она препятствует" скольжению тела / по телу //. В соответствии с аксиомой 4 (3 з-он Ньютона) на тело // со стороны тела / действует равная по модулю и противоположно направленная сила реакции. Ее составляющая, перпендикулярная касательной плоскости, называется силой нормального давления. Как было сказано выше, сила трения ТА = О, если соприкасающиеся поверхности идеально гладкие. В реальных условиях поверхности шероховаты и во многих случаях пренебречь силой трения нельзя.Для выяснения основных свойств сил трения произведем опыт по схеме, представленной на рис. 6.2, а. К телу 5, находящемуся на неподвижной плите D, присоединена перекинутая через блок С нить, свободный конец которой снабжен опорной площадкой А. Если площадку А постепенно нагружать, то с увеличением ее общего веса будет возрастать натяжение нити S, которое стремится сдвинуть тело вправо. Однако пока общая нагрузка не слишком велика, сила трения Т будет удерживать тело В в покое. На рис. 6.2, б изображены действующие на тело В силы, причем через Р обозначена сила тяжести, а через N — нормальная реакция плиты D.Если нагрузка недостаточна для нарушения покоя, справедливы следующие уравнения равновесия: N-P = 0, (6.1) S-T = 0. (6.2).Отсюда следует, что N = P и T = S. Таким образом, пока тело находится в покое, сила трения остается равной силе натяжения нити S. Обозначим через Tmax силу трения в критический момент процесса нагружения, когда тело В теряет равновесие и начинает скользить по плите D. Следовательно, если тело находится в равновесии, то T≤Tmax.Максимальная сила трения Ттах зависит от свойств материалов, из которых сделаны тела, их состояния (например, от характера обработки поверхности), а также от величины нормального давления N. Как показывает опыт, максимальная сила трения приближенно пропорциональна нормальному давлению, т. е. имеет место равенство Tmax=fN. (6.4).Это соотношение носит название закона Амонтона — Кулона.Безразмерный коэффициент / называется коэффициентом трения скольжения. Как следует из опыта, его величина в широких пределах не зависит от площади соприкасающихся поверхностей, но зависит от материала и степени шероховатости соприкасающихся поверхностей. Значения коэффициентов трения устанавливаются опытным путем и их можно найти в справочных таблицах. Неравенство' (6.3) можно теперь записать в виде T≤fN(6,5).Случай строгого равенства в (6.5) отвечает максимальному значению силы трения. Это значит, что силу трения можно вычислять по формуле T = fN только в тех случаях, когда заранее известно, что имеет место критический случай. Во всех же других случаях силу трения следует определять из уравнений равновесия.Рассмотрим тело, находящееся на шероховатой поверхности. Будем считать, что в результате действия активных сил и сил реакции тело находится в предельном равновесии. На рис. 6.6, a показана предельная реакция R и ее составляющие N и Ттах (в положении, изображенном на этом рисунке, активные силы стремятся сдвинуть тело вправо, максимальная сила трения Ттах направлена влево). Угол ф между предельной реакцией R и нормалью к поверхности называется углом трения. Найдем этот угол. Из рис. 6.6, а имеем tgφ=Tmax/N или, пользуясь выражением (6.4), tgφ= f (6-7)Из этой формулы видно, что вместо коэффициента трения можно задавать угол трения (в справочных таблицах приводятся обе величины).