Хаос в упругих непрерывных средах

Было проведено много экспериментов с хаотическими колебаниями упругих стержней. Исследованы проблемы двух типов.

В задачах одного класса уравнение в частных производных, описывающее движение стержня, линейно, но не линейны массовые силы или граничные условия. В других задачах движения достаточно сильны, чтобы в уравнениях движения стали существенными нелинейные члены.

При малых изгибах и отклонениях уравнение движения упругого

Хаос в упругих непрерывных средах - student2.ru ,

где Хаос в упругих непрерывных средах - student2.ru – поперечное смещение стержня, Хаос в упругих непрерывных средах - student2.ru – коэффициент упругой жесткости, Хаос в упругих непрерывных средах - student2.ru – масса на единицу длины.

Правая часть уравнения описывает распределенные массовые силы или внутреннее затухание. Во многих опытах, для создания нелинейных массовых сил использовались постоянные магниты.

Когда смещение и наклон оси стержня велики, горизонтальное и вертикальное смещение и наклон характеризуются переменными Хаос в упругих непрерывных средах - student2.ru , связанными соотношениями

Хаос в упругих непрерывных средах - student2.ru .

где Хаос в упругих непрерывных средах - student2.ru – длина, измеряемая вдоль деформированного стержня (см. рисунок).

Хаос в упругих непрерывных средах - student2.ru

Рисунок 1.81 - Плоская деформация упругого стержня

Уравнения сохранения импульса приобретают вид

Хаос в упругих непрерывных средах - student2.ru ,

где

Хаос в упругих непрерывных средах - student2.ru Хаос в упругих непрерывных средах - student2.ru .

В этих уравнениях Хаос в упругих непрерывных средах - student2.ru – компоненты массовой силы, а Хаос в упругих непрерывных средах - student2.ru – осевая сила, создающая напряжения в стержне. Нелинейные члены отличаются от характерных для механики жидкостей тем, что сюда не входят переносные, или кинематические, нелинейности. Локальная зависимость напряжений от деформации линейна. Нелинейные члены возникают из-за изменения геометрической формы и называются геометрическими нелинейностями.

Наши рекомендации