Методы изучения физических явлений

ВВЕДЕНИЕ

Процессы теплообмена и связанного с ним массообмена играют исключительную роль в природе и технике. Действительно, от них зависит температурный режим окружающей среды. От них зависит протекание рабочего процесса в самых разных технологических установках. Неудивительно поэтому, что теория теплообмена интенсивно развивалась, особенно в последние десятилетия. Это связанно с потребностями теплоэнергетики, атомной энергетики, космонавтики. Интенсификация различных технологических процессов, а также создание оптимальных с точки зрения энергозатрат установок немыслимо без глубокого изучения теплофизических процессов, которые имеют место в этих установках.

Цель данной части курса – познакомить слушателей с осно­вами теплопередачи. В курсе мы рассмотрим коротко основные методы решения задач теплопроводности, в том числе и численные методы с применением ЭВМ. Один из разделов будет посвящен кон­вективному и радиационному теплообмену. В конце курса рассмот­рим решение задачи теплопроводности с помощью численного ме­тода – метода конечных элементов.

Тепловые процессы в ЭТУ – это довольно сложные физиче­ские явления. При анализе физических процессов необходимо выяс­нить их движущие силы. При этом сложные процессы часто рас­сматривают как совокупность простых явлений. То есть, неизбежны некоторые упрощения. Так обстоит дело и при изучении теплопере­носа. Обычно эти процессы теплопереноса связаны с процессами массообмена. В совокупности эти явления рассматриваются в про­цессах сушки, испарения, когда передача тепла обусловлена не только собственно теплопередачей, но и движением массы испаряе­мой влаги.

Во многих процессах теплообработки, массообмен не играет существенной роли. Например, при нагреве различных твердых объ­ектов. В нашем курсе в большинстве случаев мы будем пренебрегать процессами массообмена.

В соответствии с поставленными задачами данный курс подразделяется (состоит) на две части:

- в первой части (основной) мы будем рассматривать различ­ные виды теплообмена (теплопроводность, конвективный и радиационный теплообмен);

- во второй части – рассмотрим теоретические основы электронагрева в различных установках: в печах сопротивле­ния, в установках индукционного, дугового, диэлектриче­ского, плазменного нагрева, в электронно-лучевых нагре­вательных установках.

Теория теплопроводности

При анализе любого физического процесса исследователь пы­тается выяснить движущие силы процесса, и если это можно пред­ставить в виде простых процессов, то есть упрощение неизбежно.

Механизмы переноса тепла

Теплообмен – необратимые самопроизвольные процессы распространения теплоты в пространстве. Осуществляется тремя спо­собами: теплопроводностью, конвекцией и тепловым излучением.

Теплопроводность – молекулярный перенос теплоты в телах (или между ними), обусловленный переменностью теплоты в про­странстве. Наблюдается в твердых телах.

Конвекция – возможна только в текучей среде – это процесс переноса теплоты при перемещении объемов жидкости или газа в пространстве из области с одной температурой в область с другой температурой, то есть за счет переноса самой среды. Это перемещение нагретого воздуха вверх за счет того, что он имеет меньшую плот­ность.

Тепловое излучение – процесс распространения теплоты с по­мощью электромагнитных волн, обусловленный только температу­рой и оптическими свойствами излучающего тела; при этом энергия внутренняя переходит в энергию излучения.

Теплообмен излуче­нием – процесс превращения внутренней энергии вещества в энер­гию излучения, переноса излучения и его поглощения веществом.

В природе и технике элементарные процессы распространения теплоты очень часто происходят совместно.

Теплопроводность в чистом виде большей частью имеет место лишь в твердых телах. Конвекция теплоты всегда сопровождается теплопроводностью. Совместный перенос теплоты конвекцией и те­плопроводностью называется конвективным теплообменом.

Процессы теплопроводности и конвективного теплообмена могут сопровождаться теплообменом излучением. Теплообмен, обусловленный совместным переносом теплоты излучением и тепло­проводностью, называют радиационно-конвективным теплообме­ном. Если перенос теплоты осуществляется дополнительно и кон­векцией, то такой процесс называют радиационно-конвективным те­плообменом. Иногда такие виды теплообмена называют сложным теплообменом.

Методы изучения физических явлений

На основе представлений современной физики явления при­роды вообще и теплопроводности в частности, возможно, описать и исследовать на основе феноменологического статистического мето­дов.

Феноменологический метод – игнорирует микроскопическую структуру вещества, рассматривает его как сплошную среду. Этот метод исследования дает возможность установить некоторые общие соотношения между параметрами, которые характеризуют рассмат­риваемое явление в целом. Феноменологические законы носят весьма общий характер. Роль конкретной физической среды учиты­вается коэффициентами, которые определяются из опыта.

Другой путь – статический метод изучения физических явле­ний основан на изучении внутренней структуры вещества. Среда рассматривается как некоторая физическая система, состоящая из большого числа молекул, ионов или электронов с заданными свой­ствами и законами взаимодействия. Основная задача этого метода – получение макроскопических характеристик по заданным микро­скопическим свойствам среды.

В основу исследования процессов теплопроводности положен феноменологический метод. Его достоинством является то, что он позволяет сразу установить общие связи между параметрами, харак­теризующими процесс. А недостатком является то, что точность ме­тода зависит от точности экспериментального определения коэффи­циентов теплопроводности, теплоемкости и т.д.

Температурное поле

Явление теплопроводности – процесс распространения энер­гии при непосредственном соприкосновении отдельных частиц тела, имеющих различные температуры. Теплопроводность обусловлена движением микрочастиц вещества.

В газах перенос энергии осуществляется за счет диффузии мо­лекул и атомов, а в жидких и твердых телах - диэлектриках – за счет диффузии свободных элементов. Хорошие электрические провод­ники хорошо проводят тепло – медный таз.

Процесс теплопроводности, как и другие виды теплообмена, имеет место при условии разности температуры в различных точках тела.

Поэтому аналитическое исследование теплопроводности сво­дится к изучению пространственно-временного изменения темпера­туры. Пример: охлаждение заготовки.

T = f(x,y,z,t) – температурное поле

Температурное поле – это совокупность значений темпера­туры во всех точках пространства для каждого момента времени.

T = f1(x,y,z,t); ¶T/¶t = 0 стационарное

Температурный градиент

Методы изучения физических явлений - student2.ru

n
Изотермы – линии, содержащие точки тела с одинаковой температурой (рис. 1). Наибольший перепад температуры на единицу длины происходит в направлении нормали к изотер­мической поверхности.

Методы изучения физических явлений - student2.ru - градиент тем­пературы – вектор на­правленный по нормали к изотермической поверхно­сти в сторону возрастания.

Рис.1 Изотермы

Наши рекомендации