Методика изучения сложения и вычитания в пределах 100
При обучении сложению и вычитанию в пределах 100 соблюдаются все требования, которые предъявляются к обучению выполнению действий в пределах 20.
Многие трудности, которые испытывают школьники с нарушением интеллекта при выполнении действий сложения и вычитания в пределах 20, не снимаются и при выполнении этих же действий в пределах 100. Как показывают опыт и специальные исследования по-прежнему большие затруднения учащиеся испытывают I выполнении действия вычитания. Наибольшее количество ошибок возникает при решении примеров на сложение и вычитание переходом через разряд. Характерная ошибка при вычитании, единиц вычитаемого вычитают единицы уменьшаемого. Например, 35—17=22. Наблюдается также тенденция замены одного действия другим. Например: 64—16=80, 17+2=15 (вместо вычитании выполнено сложение и наоборот). При выполнении действий < двузначными числами учащиеся часто принимают во внимание только единицы одного разряда, единицы другого разряда (первого или второго компонентов) переписывают без изменении (36+11=46, 85—24=64). Допускаются и такие ошибки: учащиеся складывают или вычитают, не обращая внимания на разряды: единицы складывают с десятками (37+2=57, 38—20=36), из меньшего числа вычитают большее (17—38=21), при решении сложных примеров выполняют только одно действие (12+14—8=26).
Характерно, что учащиеся школы VIII вида долгое время не овладевают рациональными приемами вычисления, задерживаясь на приемах пересчитывания конкретных предметов, присчитывания по единице.
Причины ошибок заключаются в недостаточно твердом знании таблиц сложения и вычитания в пределах 10 и 20 (39—7=31, 42+7=48), в недостаточно твердом знании и понимании позиционного значения цифр в числе или в неумении использовать свои знания на практике, а также в особенностях мышления школьников с интеллектуальным недоразвитием.
Последовательность изучения действий сложения и вычитания обусловлена нарастанием степени трудности при рассмотрении различных случаев.
1.Сложение и вычитание круглых десятков (30+20, 50—20,
решение основано на знании нумерации круглых десятков).
2.Сложение и вычитание без перехода через разряд.
3. Сложение двузначного числа с однозначным, когда в сумме получаются круглые десятки. Вычитание из круглых десятков однозначного и двузначного числа:
35+5=30+5+5 5+35=30+5+5 35+45=35+40+5
40-5= 40-23=40-20-3 40-33=40-30-3
4. Сложение и вычитание с переходом через разряд.
42- 7 62-27 62-57
35+ 7 7+35 35+27
Все действия с примерами 1, 2 и 3-й групп выполняются приемами устных вычислений, т. е. вычисления надо начинать с единиц высших разрядов (десятков). Запись примеров производится в строчку. Приемы вычислений основываются на знании учащимися нумерации, десятичного состава чисел, таблиц сложения и вычитания в пределах 10.
Действия сложения и вычитания изучаются параллельно. Каждый случай сложения сопоставляется с соответствующим случаем вычитания, отмечается их сходство и различие.
Такие случаи сложения, как 2+34, 5+45 и др., не рассматриваются самостоятельно, а решаются путем перестановки слагаемых и рассматриваются совместно с соответствующими случаями: 34+2, 45+5.
Объяснение каждого нового случая сложения и вычитания проводится на наглядных пособиях и дидактическом материале, с которым работают все ученики класса.
Рассмотрим приемы выполнения действий сложения и вычитания в пределах 100:
1) 30+20= 50-30=
Рассуждения проводятся так: 30 — это 3 десятка (3 пучка палочек). 20 — это 2 десятка (2 пучка палочек). К 3 пучкам палочек прибавим 2 пучка, всего получили 5 пучков палочек, или 5 десятков. 5 десятков — это 50. Значит, 30+20=50.
Такие же рассуждения проводятся и при вычитании круглых десятков.
Подробная запись на первых порах позволяет закрепить последовательность рассуждений.
К решению примеров привлекаются все пособия, которые и пользуются при изучении нумерации. Действия производятся о6язательно на счетах.
Объяснение решения примеров данного вида проводится также на пособиях (абак, арифметический ящик, счеты).
Указанные выше случаи сложения, а также вычитания решаются ответственно одинаковыми приемами.
Решение примеров данного вида базируется на уже известных учащимся приемах решения:
54-18 18=10+ 8 54-10=44 44- 8=36 38+24 24=20+ 4 38+20=58 58+ 4=62
Решение этих примеров основывается на разложении второго слагаемого и вычитаемого на разрядные слагаемые и последовательном сложении и вычитании их из первого компонента действия.
Чтобы учащиеся приобрели умения и навыки в решении примера сложение и вычитание с переходом через разряд, надо выполнить достаточно много упражнений. Примеры можно давать с двумя, и с тремя компонентами, чередуя действия сложения и вычитания. Решаются и такие примеры: 48+(39—30).
Расположение материала с постепенно нарастающей степенью трудности позволяет учащимся овладеть необходимыми приемами при выполнении действий сложения и вычитания. Успех овладения вычислительными приемами во многом зависит от активности учащихся.
В школе VIII вида всегда будет группа детей, которым оказывается недоступным овладение устным вычислительным приемом при Решении примеров с переходом через разряд (27+38, 65—28). Такие учащиеся будут решать примеры приемами письменных вычислений (в столбик).
При изучении сотни закрепляется название компонентов и результатов действий сложения и вычитания. Чтобы названия компонентов вошли в активный словарь учащихся, необходимо при чтении выражений пользоваться этими названиями, например: «Первое слагаемое 45, второе слагаемое 30. Найти сумму. Уменьшаемое 80, вычитаемое 32. Найти разность. Найти сумму трех чисел: 30, 18, 42. Как называются числа при сложении? От суммы чисел 20 и 35 отнять 40» и т. д.
При изучении сотни учащиеся знакомятся с нахождением неизвестных компонентов сложения и вычитания.
При изучении действий сложения и вычитания в пределах 10 и 20 учащиеся решали примеры с неизвестными компонентами, используя прием подбора, например: П+3=10, 4+П=7, П—4=6, 10-П=4.
При изучении сотни неизвестный компонент обозначается буквой и учащиеся знакомятся с правилом нахождения неизвестных компонентов.
Прежде чем познакомить учащихся с решением примеров, содержащих неизвестный компонент, надо создать ситуацию, придумать такую жизненно-практическую задачу, которая дала бы учащимся возможность понять, что по двум известным компонентам и одному неизвестному можно найти этот третий неизвестный компонент.