Сушка, контроль и расфасовка препарата
После выделения и химической очистки антибиотика его необходимо высушить, т. е. удалить из препарата свободную и связанную воду. Поскольку большинство антибиотиков в той или иной степени термолабильны, для их высушивания применяют методы, не приводящие к потере биологической активности, не изменяющие цвета препарата. На современном этапе промышленного получения антибиотиков используют следующие методы обезвоживания. Это:
• Лиофильная сушка антибиотиков - широко распространенный метод, он проводится при сравнительно низких температурах (-8 - - 12 оС).
• Высушивание с применением распылительной сушилки - прогрессивный метод при работе с большими количествами антибиотика, раствор антибиотика пневматически распыляется до мельчайших капель в камере с потоком нагретого воздуха. Процесс высушивания антибиотиков занимает несколько секунд, при этом даже термолабильные препараты не меняют свойств.
• Метод взвешенного слоя (или сушка в вакуум-сушильных шкафах) применяется для высушивания зернистых и пастообразных антибиотических препаратов.
Контроль препарата
Готовый антибиотик подвергается тщательному контролю: биологическому и фармакологическому.
При биологическом контроле ставится задача выяснения стерильности готового препарата. Для этого обычно используют два метода.
Первый связан с инактивацией антибиотика и высевом его в соответствующую питательную среду. Например, биологический контроль бензилпенициллина и полусинтетических препаратов, полученных на его основе, проводится следующим образом. В пробирки, содержащие тиогликолевую среду, вносят фермент пенициллазу в количестве, способном полностью инактивировать пенициллин. Пробирки с пеницилла-зой выдерживают двое-трое суток при температуре 37 оС для контроля стерильности фермента, затем в них вносят раствор пенициллина. Пробирки разделяют на две группы: одну выдерживают при 37 оС, а другую - при 24 оС в течение пяти суток. Ведут ежедневное наблюдение за возможным развитием микроорганизмов.
Второй метод выяснения стерильности антибиотиков определяется тем, что для большинства этих соединений не имеется инактиваторов их биологической активности. Поэтому у изучаемых препаратов выявляют устойчивые к ним формы микроорганизмов, а также определяют возможное присутствие чувствительной микрофлоры. Для определения возможного присутствия в таких препаратах чувствительной к ним микрофлоры раствор антибиотика пропускают через мембранные фильтры с диаметром пор не более 0,75 мк.
Фармакологический контроль.
К антибиотическим веществам, используемых в медицинской практике, в соответствии с Государственной Фармакопеей предъявляются очень строгие требования. Каждый новый лекарственный препарат, прежде чем он будет разрешен к практическому применению, должен пройти всесторонние испытания на токсичность, пирогенность и другие свойства, жизненно важные для организма. Препарат изучают на разных видах животных в отношении его острой и хронической токсичности (влияние на кровь, ЦНС, дыхание и т. д.). Показатели острой токсичности - один из критериев качества антибиотического вещества. Устанавливают максимально переносимую дозу (МПД) антибиотика; дозу, вызывающую гибель 50 % подопытных животных (LD50) и смертельную дозу (LD100). Только после всестороннего и тщательного изучения препарата он может быть рекомендован к практическому применению.
Расфасовка и упаковка антибиотика - завершающий этап работы.
Расфасованный и упакованный антибиотик с указанием показателя биологической активности, даты выпуска и срока годности поступает в продажу.
Обобщая весь многостадийный и многоступенчатый процесс получения антибиотика, можно отметить, что он включает в себя четыре основные стадии:
I стадия - получение соответствующего штамма, продуцента
антибиотика, пригодного для промышленного производства;
II стадия непосредственно связана с процессом биосинтеза антибиотика;
III стадия - это процессы выделения и очистки образовавшегося в ходе биосинтеза антибиотика;
IV стадия включает в себя операции, связанные с концентрацией антибиотика, его стабилизацией и получением готового продукта.
Производство пенициллинов
В 1871 г. В .А. Манасеиным было установлено, что зеленая плесень Penicillium glaucum при своем росте уничтожает бактерии, попадающие в культуральную среду. Это свойство Penicillium было тогда же использовано врачом А. Г. Полотебневым, применившим смоченные этой плесенью повязки при лечении гнойных ран и язв.
Выдающееся открытие русских ученых не получило широкой известности, и в 1928 г. англичанин Александр Флеминг вторично обнаружил способность плесневого грибка Penicillium угнетать рост микроорганизмов. Было показано, что вызываемая плесенью гибель микробов обусловлена образованием неизвестного органического вещества, названного пенициллином.
Однако выделение пенициллина в чистом виде в то же время осуществлено не было, так как он оказался веществом очень лабильным, а применявшиеся методы очистки были несовершенны.
В годы Второй мировой войны огромная практическая потребность в эффективных антибактериальных препаратах привлекла к пенициллину внимание широкого круга специалистов, и примерно с 1939 г. начался период интенсивных исследований. Благодаря этому в относительно короткий срок (3-5 лет) англичанами Х. Флори и А. Чэттеном были разработаны способы промышленного получения и очистки пенициллина, изучены его лечебные свойства и методы клинического применения, а также установлена его химическая структура.
К пенициллинам относится группа близких по химическим свойствам соединений, содержащих в своей структуре b-лактамное и тиазо- лидиновые кольца:
R может иметь различные значения, в зависимости от типа пенициллина. Например, при R = -CH2C6H5 - это бензилпенициллин; R = - СН2-О-С6Н5 - это феноксиметилпенициллин и т. д. Наличие карбоксильной группы придает молекуле пенициллина сильные кислотные свойства, поэтому пенициллин легко образует соли со щелочами (Na, K), а также с органическими основаниями, например с дибензилэтилендиамином (препарат - бициллин).
Для практических целей медицины пенициллин получают в промышленности путем биосинтеза.
Процесс биосинтеза складывается из следующих стадий:
1) выращивания посевного материала (микроорганизмов) в аппаратах малой емкости - инокуляторах;
2) выращивания посевного материала в больших посевных аппаратах;
3) процесса ферментации;
4) выделения антибиотика из культуральной жидкости и его очистки.
Важное значение имеет также селекционный подбор высокопроизводительных штаммов плесени, подготовка и стерилизация питательной среды и аппаратуры.
Очень важное значение для высокого выхода пенициллина имеет питательная среда, примерный состав которой (в %) следующий:
Кукурузный настой - 3 (по объему) | Сульфат цинка - следы |
Лактоза (или глюкоза) - 2 (по весу) | Карбонат кальция - 0,25 |
Нитрат натрия - 0,6 | Магний сернокислый гептагидрат - 0,05 |
Калий фосфорнокислый (одноза- мещенный) - 0,15 | Вода ~90 |
Вместо какурузного настоя успешно применяется мука из хлопковых семян или мясные гидролизаты. |
Приготовленную питательную среду подвергают стерилизации. Процесс ведут в колоннах непрерывного действия. Далее питательная среда поступает в аппарат-выдерживатель, где охлаждается в течение определенного времени до температуры 23-25 оС.
Первая стадия процесса - выращивание стандартной колонии штаммов плесени Penicillium chrysogenum - проводится в инокуляторах на питательной среде, где процесс идет ~30 часов. Подготовленный инокулят передают в посевной аппарат, объем которого ~ в 10 раз больше объема инокулятора. В посевном аппарате находится также стерилизованная питательная среда. Процесс роста здесь идет ~15-20 часов, и далее посевной материал передается на ферментацию в большие реакторы - ферментаторы объемом до 100 м на питательную среду. Процесс ферментации идет ~70 часов при температуре 23-24 оС, рН среды 6-6,5 и постоянной аэрации воздуха - 1 л воздуха/1 литр питательной среды/1 мин по всему объему ферментатора. Основная задача этого процесса - создание оптимальных условий для развития продуцента и накопления антибиотика. Биосинтез антибиотика - двухфазный процесс. В течение первой фазы происходит быстрый рост и размножение мицелия или бактериальных клеток. Куль- туральная жидкость в этот период богата углеводами, азотом и неорганическим фосфором. Продукты обмена веществ микроорганизмов, в том числе и антибиотики, находятся в малых количествах.
Вторая фаза начинается с момента замедления роста культуры. Протекает она в культуральной жидкости, обогащенной продуктом жизнедеятельности организма с небольшим количеством углеводов и фосфора. В начале этой фазы мицелий обладает максимальной способностью к синтезу антибиотика. Фазы отличаются характером и интенсивностью биохимических реакций. С учетом этих различий подбирают условия, благоприятные для первой и второй фаз развития продуцента.
Для увеличения выхода антибиотика в питательную среду вводят «предшественники», т. е. химические вещества, способствующие целенаправленному синтезу антибиотика. Так, в питательную среду при биосинтезе пенициллина вводят «предшественник» фенилацетамид - это увеличивает выход антибиотика более чем в 2 раза.
По окончании процесса ферментации культуральную массу передают на процесс выделения антибиотика.
Рис. 3 Схема производства антибиотиков в процессе микробного синтеза |
Большинство продуцентов при биосинтезе выделяют антибиотик в водную фазу, поэтому процесс выделения антибиотика начинается с разделения твердой и жидкой фаз.
Твердая фаза, кроме массы мицелия, содержит значительное количество коллоидных примесей, затрудняющих фильтрование, поэтому культуральную массу предварительно подвергают различным типам коагуляции (электролитической, тепловой, кислотной и т. д.). Наиболее эффективным методом коагуляции культуральной массы является ее обработка флокулянтами (высокомолекулярными полиэлектролитами), например, поли-(4-винил)-Ы-бензилтриметиламмонийхлоридом.
Оставшийся от фильтрации мицелия водный раствор антибиотика направляют на химическую очистку и выделение.
Таким образом, водный раствор пенициллина направляют после фильтрации на экстракцию бутилацетатом при рН водной среды, равной 2. При таком значении кислотности среды подавляет кислотная ионизация пенициллина в водной фазе и он переходит в органическую фазу (в бутилацетат). Реэкстракцию пенициллина из бутилацетата проводят слабыми растворами щелочей.
Широко применяются сорбционные методы выделения и очистки антибиотиков. В качестве сорбентов широко используются синтетические ионообменные смолы.
Сушат пенициллины методом сублимации или распыления.
Широкое и успешное использование антибиотиков в медицине привело к их использованию и в других областях, в том числе:
- в ветеринарии (с теми же целями, что и в медицине);
- для борьбы с некоторыми болезнями растений бактериального и грибкового происхождения;
- в качестве добавки к кормам животных, так как они ускоряют рост и увеличивают степень превращения кормов в мясо;
- в качестве консервантов скоропортящихся продуктов;
- для подавления бактериальной флоры при осуществлении различных процессов при производстве вакцин.
Наука об антибиотиках продолжает быстро развиваться. С одной стороны, продолжаются поиски новых, еще более эффективных препаратов биотехнологии, в том числе с иммуностимулирующим, противоопухолевым, противовирусным действием, с другой стороны, расширяются работы по химическому синтезу производных этих веществ и химической модификации природных антибиотиков.