Механика и механизм разрушения полимеров

На вопрос, как и почему разрушаются твердые тела, впервые ответил Гриффит еще в конце XIX в. Его теория, которую можно отнести к механике разрушения, по праву считается классической.

Согласно Гриффиту, разрушение твердого тела под действием механического напряжения связано, в первую очередь, с существованием и развитием трещин. Модель трещины можно представить в виде отверстия в форме эллипса с полуосями а и b в плоском образце единичной толщины (рис. 4.16). Если приложить растягивающее напряжение σ на расстоянии, бесконечном от трещины, то в вершине последней напряжение будет концентрироваться в соответствии с уравнением:

Механика и механизм разрушения полимеров - student2.ru

где ρ = Ь2/а - радиус кривизны у полюса эллипса. Это напряжение спадает по удалении от трещины в соответствии с зависимостью, приведенной на рис. 4.16. Величина σmax/σ характеризует концентрацию напряжений, она приближенно равна:

Механика и механизм разрушения полимеров - student2.ru

Модель острой трещины задается уменьшением радиуса кривизны. При ρ → 0 напряжение в районе вершины трещины неограниченно возрастает. При малых х справедливо приближенное соотношение:

Механика и механизм разрушения полимеров - student2.ru

при ρ ≤ x ≤ a, откуда видно, что напряжение в окрестностях вершины трещины прямо пропорционально квадратному корню от ее длины.

Механика и механизм разрушения полимеров - student2.ru

Деформирование приводит к накоплению в теле упругой энергии, равной, согласно теории упругости, σ2/2Е. Если в плоском деформируемом теле с единичной толщиной образовалась трещина, то упругая энергия такого тела уменьшается на величину, равную

Механика и механизм разрушения полимеров - student2.ru

т.е. на величину энергии, локализованной в объеме, ограничивающем трещину. Поскольку мы имеем дело с листом ограниченной толщины, то в данном случае вместо объема рассматривается площадь окружности, огибающей трещину, которая приближенно равна Механика и механизм разрушения полимеров - student2.ru a2. Эта часть энергии WE расходуется на образование двух новых поверхностей при раскрытии трещины, концентрированная на них поверхностная энергия равна Ws = 4αүS, где үS - удельная поверхностная энергия. Условие разрушения Гриффита можно записать следующим образом:

Механика и механизм разрушения полимеров - student2.ru

Трещина может самопроизвольно расти лишь при достижении некоторого критического размера αкр:

Механика и механизм разрушения полимеров - student2.ru

Таким образом, согласно Гриффиту, общая картина разрушения складывается следующим образом. Твердые тела имеют трещины, которые являются следствием дефектов структуры и связанных с ними внутренних напряжений, однако, в обычных условиях эти трещины не раскрываются, поскольку их размер меньше критического. При действии внешнего напряжения оно может сконцентрироваться в вершинах микротрещин до величины, достаточной для ее раскрытия. После того, как размер трещины превысит αкр, она развивается необратимо с ускорением (что следует из (4.25)) до разрушения образца. В том случае, когда воздействие на образец материала не носит ударного характера, т.е. скорость деформации невысока, в вершине трещины может развиться пластическая деформация, если напряжение достигнет предела текучести σт. Это приводит к релаксации напряжения и остановке роста трещины.

При Т < Тхр, а также при Т > Тхр, но больших скоростях деформации (ударные нагрузки), пластическая деформация и, следовательно, релаксация напряжений не успевают развиться, поэтому в обоих случаях имеет место хрупкое разрушение материала. Механизм хрупкого разрушения полимеров в наибольшей степени отвечает теории Гриффита и практически не отличается от механизма разрушения низкомолекулярных твердых тел. По достижении критического размера трещины начинают расти с ускорением до тех пор, пока скорость их роста не достигнет скорости распространения упругих колебаний (звука) в данном материале. По достижении этого трещины растут с постоянной скоростью до разрушения образца. Трещины, вызывающие разделение образца на части, называются магистральными.

При Т > Тхр и умеренных скоростях нагружения, когда, наряду с упругой, развивается также пластическая деформация, механизм разрушения полимеров, соответствующий этим условиям, называется релаксационным. Релаксационные явления оказывают большое влияние на процессы зарождения и развития трещин. К первому из этих процессов теория Гриффита может быть применена лишь с большими поправками и допущениями. В рассматриваемом случае упругая энергия полимера, запасенная при деформации Wσ, расходуется не только и не столько на увеличение поверхностной энергии WS но также в значительной степени рассеивается вследствие механических потерь:

Механика и механизм разрушения полимеров - student2.ru

Величина δQ учитывает механические потери, она определяется, главным образом, рассеиванием энергии в форме теплоты, выделяемой за счет внутреннего трения в релаксационных процессах, связанных с перемещением сегментов цепей, элементов надмолекулярной структуры. Механические потери для полимеров очень значимы, они могут превышать на несколько порядков изменение поверхностной энергии, связанное с ростом трещины. Поэтому при наличии релаксационных явлений в основном уравнении теории Гриффита используется некая эффективная величина, включающая как свободную поверхностную энергию, так и механические потери.

Пластическая деформация, характерная для релаксационного механизма, приводит также к специфичному и присущему только полимерам явлению возникновения трещин серебра или крейзобразования. Внешне трещины серебра выглядят, как серебряная паутина на поверхности и в объеме прозрачного полимерного образца. При их значительной концентрации полимер теряет прозрачность. Трещины серебра обычно образуются при напряжениях, существенно меньших по сравнению с пределом текучести σт, и при деформации порядка 1 % они могут также образовываться при хранении полимерного материала как результат внутренних напряжений. В отличие от обычных трещин трещины серебра представляют собой систему микропор, разделенных тяжами или перегородками, состоящими из микрофибрилл полимера, ориентированных в направлении вытяжки.

Считается, что образование трещин серебра является следствием неравномерного распределения напряжений и деформаций в объеме и на поверхности деформируемого образца. Разрыв химических связей в перенапряженных областях и пластическая деформация полимера (течение) в менее напряженных областях приводят к одновременному возникновению микропор и разделяющих их тяжей из ориентированных микрофибрилл.

Образование трещин серебра не приводит к разрушению полимерного материала, поскольку тяжи, соединяющие стенки трещины, не дают им раскрыться. Разрушение образца происходит в течение определенного времени, зависящего от величины приложенного напряжения путем последовательного разрыва тяжей, соединяющих стенки трещины. В этом случае магистральные трещины или трещины разрушения распространяются вслед за трещиной серебра. Образованию трещин серебра сильно способствуют многие органические растворители и некоторые газы. Этот эффект обусловлен тем, что трещины серебра содержат сообщающиеся между собой поры, доступ в которые органическим растворителям облегчен за счет капиллярных явлений. Активизирующее действие многих веществ на образование трещин серебра объясняется пластификацией полимера и снижением его поверхностной энергии; среды, содержащие такие вещества, называются адсорбционно-активными.

Наши рекомендации