Моделирование химического реактора

Математическая модель — система уравнений, устанавливающих связь между входными параметрами и выходными показателями рассматриваемого объекта.

Выявление связи осуществляется с применением критериев коррекции модели.

В подавляющем большинстве случаев в качестве критериев коррекции используются физические параметры, определяемые экспериментально, поэтому при составлении любой математической модели реактора необходимо помнить, что увеличение количества уравнений модели ведет как к увеличению точности математического описания, так и к увеличению общей системной ошибки, связанной с точностью определения физических параметров (например, показания прибора снимает человек).

Критерий коррекции — предэкпоненциальный множитель — константа скорости. На самом деле не истинная величина (постоянный состав выдуманное состояние). Польза от нанотехнологий в том, что люди впервый научились получать результаты, когда частицы близки к реальным размерам. Первые данные существенно отличаются от высчитанных на размерах, больших чем размеры наночастиц. Энергии активации фиктивные, учитывают только транспорт реагентов, а саму химическую реакцию нет. Таким образом, мы определяем некую величину и считаем, что она истинна, хотя на самом деле нет. Для этого и нужны критерии коррекции, которые делают модель каким-то образом адекватной.

При создании математического описания зачастую критерии коррекции вводятся формально, необходимо лишь, чтобы был физический смысл.

4 этапа создания математической модели:

1) Уровень валового объема.

В качестве валового объема могут быть приняты границы катализатора, капля жидкости, газовый пузырь, элемент насадки и др.

На этом этапе используются законы химического взаимодейтсивя на молекулярно-генетическом уровне. Используются и законы равновесия, и кинетики.

2) Уровень минимальной реакционной зоны.

На этом уровне рассматривается совокупность элементов малого объема и учитываются законы диффузии, (то есть транспорт реагентов к поверхности раздела фаз и транспорт продуктов от поверхности раздела фаз).

3) Уровень рабочей зоны реактора.

Рассмотрим законы транспорта реакционной смеси по реакторы в целом. Надо, чтобы работал весь катализатор, то есть чтобы реакционная смесь распределялась по всему сечению (для этого используют различные решетки). Необходимо все учитывать, например, вихри воды.

Моделирование химического реактора - student2.ru Моделирование химического реактора - student2.ru

4) Совокупность рабочих зон реактора.

Технологически обосновано применение многосекционных реакторов. Между реакторами осуществляются различные операции (охлаждение, нагрев, подпитка).

Любая математическая модель должна содержать минимум 4 уравнения:

ü Уравнение материального баланса реактора;

ü Уравнения теплового баланса реактора;

ü Уравнение кинетики.

Кинетика диффузионная – скорость процесса определяется скоростью подвода и отвода продуктов.

Кинетика химическая – скорость процесса определяется скоростью реакции.

ü Уравнение, описывающее гидродинамическую обстановку в реакторе.

Если составить грамотно 4 уравнения, то можно составить математическое описание реального реактора.

Любая математическая модель составляется для элементарного объема реактора за элементарный промежуток времени (минимальный объем, в границах которого мы можем пренебречь изменениями технологических параметров, за элементарный промежуток времени, то есть в течение этого промежутка все технологические параметры в рамках этого элементарного объема постоянны, а на границе отличаются на некую минимальную величину).

Элементарный объем неподвижен относительно корпуса реактора, его размерне меняется.

Работа любого реактора рассматривается в двух режимах — стационарный режим, когда не происходит накопление вещества и энергии во времени. В стационарном режиме работают только проточные реактора.

Второй режим — нестационарный, в котором происходит положительное или отрицательное накопление вещества и энергии в течение времени. Работают в нестационарном режиме проточные реактора в случае их запуска (положительное накопление вещества и энергии) и остановки (отрицательное накопление). Также работают все реактора периодического действия.

Для составления теплового баланса реактора необходимо знать, что по тепловому режиму все реактора делятся на:

§ Адиабатические (отсутствует теплообмен с окружающей средой);

§ Неадиабатические (теплообмен присутствует).

Организовать работу адиабатического реактора практически невозможно. Можно только приблизить к этому режиму. Потери 3-5% нормальны, зная температуру внешней стенки (она не может быть больше 47°С, чтобы человек не обжегся), температуру окружающей среды, высчитываем ∆t, и среднюю величину потерь откладываем, учитывая её в материальном балансе, и считаем, что реактор адиабатический.

Есть ситуации, когда умышленно делают неадиабатический режим для реактора с высоким тепловым эффектом. Система обеспечения водородной безопасности АЭС, например.

Поэтому рассматривают только адиабатический режим.

Классификация по температурному режиму:

Ø Изотермические: вся теплота, которая выделяется или поглощается в результате химической реакции, компенсируется за счет использования теплообменных элементов;

Ø Адиабатический: вся теплота, которая выделяется, расходуется на разогрев реакционной смеси, теплота, которая поглощается, расходуется на охлаждение реакционной смеси. Отсутствие теплообменных аппаратов — признак адиабатического режима;

Ø Политермический: режим с частичной компенсацией теплового эффекта. По конструкции реактор аналогичен изотермическому режиму, но тепловой эффект компенсируется не весь.

Наши рекомендации