Расчет поражающих возможностей осколочных мин и гранат
В различного типа источниках, начиная с литературных произведений, популярной военной литературы и заканчивая даже официальными служебными документами, когда речь идет о снарядах, гранатах, осколочных противопехотных минах и прочих изделиях, поражающих цели осколками или готовыми поражающими (убойными) элементами, к сожалению приводятся часто неверные, ошибочные и даже фантастические сведения о том, на каком расстоянии тот или иной боеприпас поражает цель.
Если бы речь шла только о литературных источниках, то все эти "ляпы" можно было бы отнести на счет некомпетентности, глупости писателей, журналистов или их желания поразить воображение читателя, заставить его поверить в то, что желательно творителю очередного шедевра.
Но, к сожалению, писатели и журналисты эти сведения в ряде случаев получают и из документальных источников.
Примечание автора. Обычно я резко обрушиваюсь на некомпетентность журналистов, убивающих наповал читателей своими глупостями типа пуль "со смещенным центром тяжести". Но в данном случае я склонен извинять их, ибо со стороны пишущей братии имеет место добросовестное заблуждение, а вот официальным лицам должно быть стыдно вводить людей несведущих в заблуждение.
Хотя, если вдуматься, то лиц, желающих иметь истинные данные о поражающей способности боеприпасов всегда гораздо меньше, нежели желающих обманывать или обманываться. Всех, кто имеет так или иначе отношение к противопехотным минам, ручным гранатам и т.п. можно разделить на четыре группы - создатели, практики, пользователи и жертвы.
Создатели, это те, кто разрабатывает, изготавливает и поставляет боеприпасы. Их стремление к обману понятно - продать подороже при экономии материалов.
Практики, это военнослужащие, использующие боеприпасы. Им необходимо (нередко, жизненно необходимо) знать точно истинные свойства боеприпасов, их поражающие способности. Вот эту-то категорию стремятся обманывать и создатели, и пользователи и даже частично жертвы. А хуже всего то, что практиков нередко стремятся обманывать и старшие военные начальники, которые норовят дать офицерам и солдатам боеприпасы попроще и подешевле, а спросить покруче и посолиднее.
Пользователи, это те кто пользуется в своих узкокорыстных интересах всеми проблемами, связанными с боеприпасами. Это и государственные руководители с политиками (прекрасный пример пользовательской деятельности - шумиха вокруг Оттавской Конвенции); и журналисты, снимающие пенки с сенсационных статей по поводу ужасов войн, взрывов, минирования и т.п.; и различного рода правозащитники, пацифисты, гуманисты, гринписовцы, набирающие политический и иной капитал на борьбе за или против тех или иных боеприпасов; и даже иногда сами военные (из тех, кто любит в свободный час вешать лапшу на уши доверчивым слушателям в надежде ухватить свой кусочек от сочного пирога военных былей и небылиц или просто порисоваться).
Жертвы, это не столько те, кто пострадал, стал инвалидом от воздействия боеприпасов, сколько те, кто боится пострадать от снарядов и мин, стать инвалидом. Эта группа охотно верит во всякие фантастические ужасы и версии, исходящие и от создателей, и от пользователей.
А теперь прикиньте, сколько тех, кто желает знать горькую истину и тех, кто желает обманывать или обманываться и вы удивитесь, что действительные сведения о боевых возможностях тех или иных бомб, снарядов, мин, гранат еще все же иногда становятся известными.
Цифры, приводимые в документальных источниках порой просто лукавят в стремлении либо дезинформировать противника, либо повысить уверенность своих солдат в могуществе своего оружия, либо обмануть генералов и заставить их принять на вооружение новый боеприпас (так обычно делают оружейные фирмы).
А между тем существуют объективные законы математики, геометрии (стереометрии), физики (баллистики, в частности), которые не зависят ни от желания фирмы сбыть товар, ни от стремления незадачливого конструкторского бюро представить положение дел с разработкой боепрпаса лучше, чем оно есть на самом деле, ни от желания полководцев иметь абсолютное оружие.
А как же испытания, спросите вы? Неужто перед принятием на вооружение никто не проверяет - на какое расстояние поражает новый снаряд, мина, граната?
Ну почему, испытывают. Но, во-первых, не так сложно обмануть представителей армии, особенно, если имеется их желание быть обманутыми (залить глаза, замаслить руки). Во-вторых, не столь сложно поставить мишени с заранее сделанными пробоинами. Да много способов обмана.
Примечание автора. Ну обманули же целый мир атомной бомбой за счет впечатляющего многокилометровой высоты столба дыма и пыли, картинками и кинокадрами кувыркающихся по земле танков, разлетающихся вдребезги домов. А ведь как полевой боеприпас атомная бомба это всего лишь большой БУМ! ТРАХ! БА-БАХ! и ничего более.
А отзывы из войск? А к ним обычно никто и не прислушивается, да и отзывы нередко идут противоречивые. Нередко, младшие и средние командиры чутко следящие за веяниями наверху и прекрасно понимающие, как их карьера зависит от благорасположения начальства, шлют наверх отзывы такого плана, какие от них там ждут.
Ко всему этому следует прибавить еще один способ обмана - неясность терминов и игра терминами. Например, если между словами "радиус" и "поражения" вставить слово "сплошного", то резко меняется суть приводимых цифр.
А скажем, термин "безопасное удаление"? Например: "...безопасное удаление при взрыве снаряда...... 200 метров". Легко придти к выводу, что ближе 200 метров обязательно получишь осколок. И невдомек человеку что, понятиями "радиус поражения" и "безопасное удаление" разница в расстояниях может быть в десять раз!
Прежде чем перейти к изложению материала обговорим термины и понятия (см. схему. Это вид в плане):
1.(Rсп)."Дальность сплошного поражения". Это расстояние от места взрыва до рубежа, где поражается не менее 70% целей. Для боеприпасов кругового поражения обычно вместо этого термина используется термин "радиус сплошного поражения", т.е. по окружности, описываемой эти радиусом будет поражаться не менее 70% целей. Участок местности, помещающийся в окружности этого радиуса именуется "Зона сплошного поражения" или "Площадь сплошного поражения". Для боеприпасов некругового поражения под этими терминами понимается сектор, по внешним границам которого поражается не менее 70% целей.
2.(Rп) "Дальность поражения (радиус поражения)". То же самое, что и дальность (радиус) сплошного поражения, но с тем отличием, что на внешней границе будет поражено не менее 20% целей. Соответственно следует понимать термин "зона поражения (площадь поражения)".
3.(Rэп) "Дальность эффективного поражения (радиус эффективного поражения)". То же самое, что и вышеприведенные термины, но на внешней границе будет поражено 50% целей. Соответственно следует понимать термин "зона эффективного поражения (площадь эффективного поражения)". В общем, этот термин носит промежуточный характер, дающий усредненные данные.
4.(Rро)"Дальность (радиус) разлета осколков". То же самое, что и радиус поражения, но с тем отличием, что на внешней границе вероятность поражения стремится к 0%.
С точки зрения чистой математики с увеличением расстояния от места взрыва вероятность поражения будет стремиться к нулю, достигая бесконечно малых величин, но никогда не станет равной нулю. По законам же физики это вполне определенное расстояние.
5. "Безопасное удаление". Обычно используется слово "...удаление" и реже слово"...радиус". Слова "...зона" или "...площадь" обычно не используются. На дальностях равных или превышающих безопасное удаление вероятность поражения явно 0%. Отличие этого термина от предыдущего в том, что на этом расстоянии заведомо невозможно поражение.
5."Гарантированное безопасное удаление" равно полуторному или двойному безопасному удалению.
Примечание автора. Вот здесь то часто и начинаются хитрые трансформации понятий. Так, например, произошло с гранатой Ф-1 ( а до нее с гранатой Миллса). Общеизвестно, что радиус поражения этой гранаты 200 метров, но мало кто знает, что 200 метров это не радиус поражения, а всего лишь гарантированное безопасное удаление. То бишь - на расстоянии 200 метров от места взрыва ты гаранитрован с двойным запасом, что не получишь осколок. На самом деле радиус поражения (даже не сплошного, а просто поражения) Ф-1 не более 5 метров.
6."Цель". Собственно, это человек, против которого работает боеприпас. В качестве расчетной цели подразумевается прямоугольник 1.8х0.6 м. имеющий площадь 1.08 кв. метра. Т.е. в это прямоугольник вписывается стоящий лицом к взрыву человек среднего роста.
Теперь, собственно, приступим к сути дела.
Противопехотные мины, поражающие солдат противника осколками или готовыми поражающими элементами можно по этому принципу разделить на три группы:
1.Противопехотные мины кругового поражения осколочные.
2.Противопехотные мины кругового поражения с готовыми поражающими элементами.
3.Противопехотные мины направленного поражения с готовыми поражающими элементами.
Соответственно несколько различна и методика расчета поражающей способности мин, хотя по сути меняется лишь способ определения площади поражения и способ определения количества поражающих элементов (осколков).
Рассмотрим группу 1.
По методике расчета поражающей способности мин этого типа можно также рассчитывать поражающую способность ручных осколочных гранат, а также в определенной мере обычных артиллерийских снарядов осколочного действия и минометных мин
Сразу оговоримся, что речь здесь будет идти только о обычных боеприпасах, имеющих обычный металлический корпус и снаряженных обычным бризантным взрывчатым веществом, которые в момент взрыва лежат неподвижно на поверхности земли и разбрасывают осколки во все стороны. Хотя, при небольшом напряжении умственных способностей нетрудно соотнести излагаемый материал с процессами разлета осколков при взрыве боеприпасов движущихся в момент взрыва (артснаряды).
Поражающими свойствами обладают, т.е. могут убить или существенно ранить (повредить человека так, что он не сможет выполнять боевую задачу) металлические осколки массой не менее 2 грамм. Оптимальными по весу следует считать осколки массой в пределах 2-5 грамм.
Конечно, при взрыве образуются осколки самых различных размеров и масс. Автору приходилось наблюдать осколки размером в полснаряда, но говорить о поражающих свойствах боеприпаса, дающего 2-3 осколка, просто не приходится. При взрыве реальное образование осколков подчинено закону случайных чисел и размеров и, если ориентироваться на закон случайностей, то какие либо расчеты невозможны. Поэтому нам придется делать некоторые математические допущения, которые позволят рассчитать максимальные вероятности поражения.
Итак, будем считать, что при взрыве боеприпаса корпус дает нам осколки массой от 2 до 5 грамм.
Примечание автора. Для сравнения и большей визуализации - пуля 7.62мм. пулеметного патрона весит 9-9.5гр, автоматная пуля 7.62мм. весит 7.5-7.9гр, автоматная пуля 5.45мм. весит 3.4-3.7гр, пуля пистолета Макарова 5.95гр.
При взрыве боеприпаса разлетающиеся осколки распределяются равномерно в пространстве на все 360 градусов по горизонту и по нормали. Если до момента взрыва корпус был цел, то с развитием взрыва взрывные газы дробят корпус на осколки, которые движутся во фронте ударной волны, имеющей форму сферы. По мере увеличения сферы и, соответственно, удаления осколков от центра взрыва расстояния между ними растут. Пока промежутки между осколками меньше или равны площади человеческого тела, то вероятность того, что осколок попадет в человека равна 100%. Затем, естественно, вероятность попадания осколков в человека уменьшается и с увеличением расстояния от места взрыва стремится к 0%. С точки зрения геометрии нулевая вероятность недостижима, но в соответствии с законом вероятности достаточно малая вероятность поражения принимается за нулевую. Физику взрыва и метательную способность заряда ВВ мы здесь не рассматриваем, но заметим, что с точки зрения физики существует предельная дальность полета осколков.
Площадь человеческого тела (стоя лицом к взрыву) составляет примерно 1.08 кв.метров (1.8х0.6=1.08). Т.е., чтобы получить стопроцентную вероятность поражения необходимо, чтобы площадь промежутков между смежными осколками была не больше 1.08 кв.м. Но т.к. для расчета радиуса сплошного поражения нам достаточно 70%, то площадь промежутков должна быть не менее 1.54кв.м.
Общеизвестная формула площади поверхности сферы
Для того, чтобы узнать, сколько нам потребуется осколков для 70% вероятности поражения разделим эту площадь на 1.54.
Т.е. формула потребного количества осколков получит вид: Для того, чтобы узнать, сколько нам потребуется осколков для 70% вероятности поражения разделим эту площадь на 1.54.
Т.е. формула потребного количества осколков получит вид:
Прикинем, сколько нам надо осколков на расстоянии 5 метров от места взрыва: N=(4x3.14x25)/1.54=204 осколка. Если наши осколки весят от 2 до 5 грамм, то масса осколкообразующего корпуса боеприпаса должна лежать в пределах 408-1020 грамм.
Кстати, масса корпуса советской противопехотной мины ПОМЗ-2 весит 1500гр. По тактико-техническим характеристикам радиус сплошного поражения этой мины 4 метра. Это в общем-то совпадает с нашими расчетами.
Это мы взяли идеальный случай. Несложно догадаться, что если осколки крупнее, то потребная масса боеприпаса будет намного выше.
Пересчитаем то же самое для радиуса не сплошного поражения, а просто поражения и на его дальней границе, т.е. для вероятности поражения 20%. В этом случае наш коэффициент будет не 1.54, а 5.25. тогда получаем N=(4x3.14x25)/5.25=60 осколков, т.е. масса боеприпаса должна быть в пределах 120-600гр.
Корпус гранаты Ф-1 весит 540 грамм.
Ф.Леонидов в статье "Подготовить гранаты" в журнале "Оружие" №8-99г. утверждает, что на образование осколков идет всего 38% металла корпуса. Оставим эту цифру на совести, как говорится, Леонидова, иначе получается. что гранаты Ф-1 не стоит опасаться и на двух метрах от нее.
"Ну а как же тогда 200 метров для Ф-1 ?" -спросит дотошный читатель. Ну давайте посчитаем: (4x3.14x4000)/5.25=9574 осколка. Это в пределах от 19.1 кг. до 47.9 кг. По моему, это вес то-ли 122мм., то-ли 152 мм. снаряда.
"Ну так-таки и невозможно получить осколок от гранаты за 100 метров? "-ехидно спросит въедливый читатель -"...а вот мой дедушка на фронте был ранен именно так!". Не будем обвинять дедушку во лжи. Получить возможно и поэтому не рекомендуют высовываться из окопа, когда рвется граната Ф-1, хотя, надо быть крайне невезучим человеком, чтобы получить шальной осколок.
Но никакого командира не устроит, если саперы начнут расставлять мины на 200 метров одна от другой в расчете, что найдутся у противника записные неудачники.
Командиру нужно, чтобы ни один боец врага не прошел через минное поле. А поэтому приведем формулы, по которым можно определить радиус поражения в зависимости от массы корпуса мины. Основная формула:
Ну, чтобы проще было считать, дадим формулы, где часть величин уже дана в численном виде:
1.Радиус сплошного поражения (70%)
2.Радиус поражения (50%)
2.Радиус поражения (20%)
Это я дал формулы для того, чтобы определять радиусы по осколкам 2 гр. и 5 гр. Можно по желанию выводить средний радиус, т.е. cкладывать R1+R2 и результат делить пополам.
Безопасное удаление определяется по иным формулам, а именно, исходя из физики взрыва, где учитывается вероятность улета отдельных осколков за пределы радиусов поражения, сила и направление ветра, плотность воздуха, аэродинамическое качество отдельных осколков (вспомните. как далеко летит крышка от консервной банки, если ее умело бросить). Дабы не утомлять читателя сложными расчетами приведем укрупненные гарантированные безопасные расстояния при взрывах бризантных ВВ из Руководства по подрывным работам издания 1969г. (ст.ст.357,389):
*заряды ВВ массой до 10 кг. без оболочки на грунте -100м.
*заряды ВВ массой 0.2-0.4 кг. в металлической оболочке -500м.
*заряды ВВ массой 0.4-0.6 кг. в металлической оболочке -700м.
*заряды ВВ массой 0.6-0.8 кг. в металлической оболочке -1000м.
*заряды ВВ массой 0.8-1.0 кг. в металлической оболочке -1200м.
*заряды ВВ массой 1.0кг. и более в металлической оболочке -1500м.
Теперь, уважаемый читатель, вы сможете, зная массу металлического корпуса боеприпаса, правильно рассчитать радиусы поражения и верно оценить, что за цифры приведены в характеристике того или иного боеприпаса.
Разумеется, в полной мере все вышесказанное относится к ручным осколочным гранатам, противопехотным осколочным минам кругового поражения (в том числе и выпрыгивающим).
С некоторым допущением эти формулы можно применить к минометным минам (учитывая, что вследствие значительной вертикальной скорости мины фронт ударной волны будет не идеальной сферой, а несколько приплюснутой и в приземном поясе осколков будет несколько больше, нежели в верхней части сферы).
К артснарядам взрывающимся при ударе о землю эти формулы применимы с очень грубым приближением, т.к. осколки распределяются здесь совсем по другим законам. Один узкий пучок осколков идет вперед по направлению полета снаряда. Два пучка осколков разлетаются влево и вправо от продольной оси снаряда тоже довольно узкими пучками и один пучок осколков летит назад. Артиллеристы это хорошо знают.
Выше мы говорили о боеприпасах, имеющих равную толщину стенок металлического корпуса по всем сторонам и в своих расчетах исходили их того, что в каждом направлении может лететь одинаковое количество осколков и все эти осколки имеют оптимальные размеры и вес (2-5грамм).
На практике же, корпус боеприпаса дробится неравномерно и осколки получаются самых различных размеров и масс - от микроскопического до размером в полкорпуса. Естественно, что реальная поражающая способность боеприпасов, в целом, обычно ниже расчетной (иногда весьма значительно) при том, что отдельные фрагменты могут улетать намного дальше расчетных дальностей.
Существовавшие еще со времен Первой Мировой войны способы добиться равномерного дробления корпуса на примерно одинаковые по массе и размеру осколки за счет нарезания на корпусе снаружи или изнутри канавок, секторов (типичный пример - граната Ф-1) мало что дают.
Прорыва в это направлении удается достигнуть за счет создания боеприпасов, имеющих тонкие стенки (задача которых лишь объединять в единое целое все элементы боеприпаса и придавать ему достаточную прочность) и снабженных готовыми поражающими элементами (шарики или ролики), размещенными вокруг заряда ВВ.
Поэтому, рассмотрим группу 2.
В противопехотных минах этой группы поражение цели наносится не осколками корпуса, образовавшимися при взрыве мины, а готовыми поражающими элементами. Обычно это стальные шарики или ролики оптимального размера и веса расположенные внутри мины оптимальным образом, т.е. обычно поражающие элементы располагаются только в боковых сторонах боеприпаса, а в верхней и нижней части мины их нет. Таким образом, во-первых, экономится вес мины. Во-вторых, в направлениях, где невозможно или маловероятно встретить цель (под миной и над миной) поражающие элементы не летят. Они летят лишь в нужных направлениях. Энергия взрывчатого вещества не расходуется на дробление прочного тяжелого корпуса, она вся уходит на разгон поражающих элементов, которые в силу своих одинаковых размеров и геометрии распределяются в пространстве более равномерно, а за счет хорошей аэродинамической формы дольше сохраняют свою скорость.
Если при этом мину еще несколько приподнять над уровнем земли, то меньше поражающих элементов уйдет в землю и таким образом удается несколько увеличить поражающую способность мины. Впрочем, это имеет существенное значение только для целей, имеющих малую высоту, но достаточную протяженность по горизонтали(человек, лежащий на земле).
Типичным примером такого боеприпаса является советская противопехотная выпрыгивающая мина ОЗМ-72, представляющая собой тонкостенную металлическую банку, в которую вставлен полый цилиндр из эпоксидной смолы с влитыми в смолу стальными шариками или роликами диаметром 2.5-3мм. каждый в количестве 2400 шт. Каждый шарик весит чуть больше 2 грамм. Внутренняя полость эпоксидного цилиндра заполнена тротилом. В нижней части банки вышибной пороховой заряд. Я не рассматриваю здесь устройство мины во всех подробностях, а лишь привожу принцип устройства и срабатывания. Более подробнее об этой мине см. соответствующую статью на сайте.
Как мы видим на схеме, в секторах А и B разлета осколков практически нет (исключая разве тонкий металл крышки). Все 2400 шариков расположены так, что при взрыве разлетаются в пределах секторов C и D, т.е. в стороны. Пространственно, объемная зона поражения представляет собой сферу, у которой срезаны верхний и нижний сегменты. Мы видим, что вес мины используется максимально для работы в нужных направлениях, что поражающие элементы (шарики) имеют оптимальную форму и вес. Соответственно и реальные поражающие возможности этой мины гораздо выше, нежели мины одинаковой с ней по весу, но представляющей собой обычный металлический корпус подобно минам ОЗМ-3 и ОЗМ-4.
При расчете поражающей способности таких мин вес корпуса мины во внимание не берется, т.к. основными поражающими элементами являются не осколки корпуса, а готовые шарики или ролики, имеющие оптимальные размеры и вес. Т.е. осколками, которые образует корпус можно пренебречь в силу их малого веса и незначительности роли в поражающей способности мины. Основными исходными данными здесь является количество имеющихся поражающих элементов и соотношение высоты корпуса к его диаметру, т.к. по этому соотношению мы определяем угол сектора разлета поражающих элементов.
Формула расчетного радиуса поражения мины кругового поражения с готовыми поражающими элементами имеет вид:
Возьмем для примера советскую мину ОЗМ-72. Она имеет 2400 шариков, ее диаметр 10.8см, высота 17см.
arctg 17/10.8=1.5740074. Это составляет угол 57.6 градуса или 1.005 радиана.
Тогда:
Это мы расчитали радиус поражения мины ОЗМ-72, те. расстояние, на котором будет поражено не менее 20% целей.
В общем, это совпадает с указываемом в документации к этой мине радиусом поражения.
Рассмотрим теперь мины группы 3, т.е. мины. имеющие готовые поражающие элементы, но посылающие их не во все стороны, а в пределах определенного сектора. Это мины типа советской МОН-50 или американской М18А1 Claymore.
Обычно в характеристиках таких мин указывают только центральный угол горизонтального сектора разлета осколков в то время, как нам для расчета радиуса поражения (собственно, правильнее здесь будет говорить о дальности поражения, т.к. поражающие элементы разлетаются здесь не по кругу) требуется знать и вертикальный угол разлета шариков.
Но это несложно определить, исходя из соотношения длины корпуса мины и его высоты.
Формула радиуса поражения для мин направленного поражения:
Возьмем для примера американскую мину M18A1 Сlaymore. Она имеет размеры 21.5х9см., содержит 700 шариков и имеет горизонтальный угол сектора разлета 60 градусов (1.047 радиана). Подставим эти данные в формул, у, взяв коэффициент поражения 0.2 (т.е.определяем радиус поражения):
и получаем результат примерно совпадающий с приводимыми в документации данными.
Автор надеется, что, вооружившись этими нехитрыми формулами, читатель сможет легко сам определять - может или нет та или иная граната одним махом уничтожить взвод воинов Аллаха, с которыми в крутых боевиках лихо расправляется один американский Рэмбо. Что-то не видим мы этих Шварценегеров сегодня в Ираке, хотя саддамовские солдаты явно не проявляют особого стремления умирать за своего любимого вождя и похоже, чаще ищут благовидного предлога сдаться в плен.
========================================================================
Если снаряд или граната упадет на асфальт или бетон осколки раскинет в разные стороны, и даже если ты ляжешь тебя может задеть. Поэтому нужно лечь за преградой.
1) Выбрать место.
2) Как спрятаться.
Но если будет глинистая почва или песчаная, если успеешь лечь может не задеть, потому что осколки пойдут вверх.
В каменистой почве может попасть, может не попасть, в зависимости от того попадет снаряд на камень или между камней.
Когда закапываем снаряд для бронетехники: под снаряд ставим большой камень, чтобы взрывная волна пошла вверх; на снаряд ставим большие камни (булыжник), на него сыпем гравий, гравий засыпаем землей, - это уплотнение. Очень эффективно!.
Это неправильный вариант, так, как мертвый угол слишком большой, основные осколки пойдут вверх, осколки, разлетевшиеся в стороны, будут слабыми.
Если снаряд закапываем на дороге, то его нужно закопать поперек дороги. А если на обочине, то вдоль дороги. Потому что основное количество осколков уходит в стороны (в боковые).
Хлопушка
Взрывпакет
Существует много способов изготовить взрывчатое устройство. За 2000 лет люди успели понапридумывать от взрывпакета до водородной бомбы. Я опишу лишь один из способов. Существует много вариаций каждого процесса ( и мой способ далёк от совершенства), я не буду на них останавливаться. Я лишь буду разяснять суть и особенности каждого действия.
Материалы:
1)Клей
2)Бумага
3)Гвозди
4)Толстая проволока
5)Крепкие нитки
6)Магний
7)Селитра
8)Стопин
9)Гильза 12 калибра
10)Резиновая нить ( используется рыболовами)
Изготовление:
1)Возьмите 10 листов бумаги (А4) и разрежьте в длину на две одинаковые половины.
2)Положите одну полоску на гладкое прочное и ровное (стол, стул, пол, доска). Намажьте тонким слоем клея ( "вишнёвый" или "крахмальный" ) всю верхнюю часть листа. Положите с верху другой и прогладьте утюгом (не горячим) чтоб не оставалось воздушных промежутков и чтоб выдавить лишний клей. Повторяйте операцию пока не закончатся листы. Последний лист смажьте с верху особо счательно.
3)Отрежьте от гильзы лезвием бумажную часть.
4)Положите отрезанную часть гильзы в начале слепленных листов (выступающие края должны быть одинаковыми) и накрутите их на неё .
5)Отступите от конца на 0.5-1см и пережмите толстой проволокой (закрутите концы проволоки и стягивайте плоскогубцами до придела) в 4 местах с разных сторон.
6)Поверх проволоки намотайте с усилием 10-15 мотков крепкой верёвки.
7)Вбейте 7-10 небольших гвоздиков ( следите за тем чтоб во время вбивания не порвалась верёвка).
8)Смещайте 5 вес.ч магниевого порошка с 6 вес.ч калиевой селитры и аккуратно перемешайте до однородного состояния.
9)Засыпьте в получившийся цилиндр этой смесью всю отрезанную часть гильзы немного утрамбовывая.
10) Повторите операции 5-7 за исключением того что перед тем как пережимать трубку вставите туда гвоздь ( д.=4мм )шляпкой вверх.
11)Оставьте ваше кривоизготовленое чудо на сутки.
12)Аккуратно виток за витком намотайте один слой растянутой до предела резиновой нити по бокам на бомбу.
13)Через 3 дня снимите резину и вытащите гвоздь.
14)На место гвоздя вставьте стопин (бикфордов шнур) подлиннее. Засуньте его как можно глубже. И оставьте устройство в таком состоянии сохнуть на неделю на батарее центрального отопления или на две при комнатной температуре.
15)Поджигаем, кидаем, убегаем...:)
Ударное ядро
( Явления кумулятивного эффекта ударного ядра)
В настоящее время все, кто хоть немного интересуется военным делом знают о существовании так называемых кумулятивных снарядов, которые предназначены для пробивания брони. Общеизвестно о высокой пробивной способности таких снарядов. Даже граната ручного гранатомета РПГ-7 способна пробить 100мм. брони. Ракеты комплексов ПТУР способны пробивать до 500м. брони. Казалось бы, что извечный спор брони и снаряда окончательно выигран снарядом. Ведь практически невозможно создать танк с броней такой толщины. Но как всегда ,на всякое действие есть противодействие. Очень быстро выяснили, что если взрыв снаряда вызвать преждевременно, т.е. на некотором расстоянии от брони, то кумулятивный эффект пропадает. Раскаленная струя рассеивается. Борта танков стали защищать тонкими листами металла и даже резины, отнесенным на некоторое расстояние от основной брони. Главное заставить сработать взрыватель. На это противодействие были изобретены так называемые тандемные снаряды, т.е. в одном снаряде находится два снаряда один за другим. Первый пробивает экран, второй основную броню. На это коварство был найден достойный ответ - активная броня. При воздействии на корпус танка кумулятивной струей, взрываются размещенные на броне контейнеры со взрывчатым веществом, ударная волна которых нейтрализует воздействие кумулятивной струи. Спор снаряда с броней продолжается.
Около 15 летлет назад появился как самтермин "ударное ядро", таки боеприпасы, бронепробивное действие которых основано на принципе так называемого "ударного ядра". Нам пока неизвестны артиллерийские снаряды, работающие на этом принципе, но вот инженерные боеприпасы, а именно, противотанковые мины этого типа существуют уже давно. Так еще в 1983 году на вооружение Советской Армии поступила противотанковая противобортовая мина ТМ-83. В Швеции имеется подобная мина Type-14. Аналоги этих мин имеются и в других странах. Эти мины устанавливаются на расстоянии нескольких метров от дороги, по которой идет танк. При взрыве мины образуется ударное ядро, которое сохраняет свою пробивную способность на дистанции до 30-40 метров от места взрыва. При испытании танка Т-72 на стойкость брони к мине ТМ-83 обнаружилось, что ударное ядро пробило бортовой экран, борт, противоположный борт, противоположный бортовой экран. Танк находился на расстоянии 15 метров от мины. Отверстие имело диаметр 3-3.5 см.
Самое любопытное в ударном ядре это то, что взрыв должен произойти на расстоянии более 1-1.5 метров от брони. Ударное ядро сформировывается именно на расстоянии около 1-2 метров от места взрыва боеприпаса и далее летит в неизменном виде около 30-40 метров, после чего вследствие трения о воздух теряет свою кинетическую энергию, высокую температуру и рассеивается.
Явление кумулятивного эффекта случайно открыл английский ученый взрывник Форстер в 1883 году, исследуя взрывные характеристики модного тогда ВВ динамита. Практическое применение кумулятивному эффекту нашли немецкие конструкторы боеприпасов в 1938 году. Впервые кумулятивные снаряды применили немецкие артиллеристы против советских танков в конце 1941 года, когда выяснилась полная неспособность немецких 37мм. и 47мм. противотанковых пушек пробить броню Т-34 и КВ.
Физика ударного ядра, впрочем, как и физика самого кумулятивного эффекта до конца не выяснена. Нет и однозначного ответа - что собой представляет кумулятивная струя, ударное ядро. Ряд специалистов полагают, что под воздействием высокого давления и температуры в области взрыва материя переходит в состояние плазмы, чем и объясняется ее высокая кинетическая энергия. Другие справедливо возражают, что энергия не берется ниоткуда, а лишь может переходить из одного вида в другой. А потенциальной энергии данного количества взрывчатки явно недостаточно для перехода материи в плазменное состояние. Однако явление-то существует! Впрочем, по всем законам аэродинамикии майский жук летать не может, а он таки, сцука, летает!
Есть одна небольшая теория, которая если не объясняет полностью явление кумуляции и ударное ядро, то достаточно наглядно иллюстрирует эти явления. Все в своей жизни достаточно часто видели дождь, видели как падают капли дождя в лужи. Видели, как из лужи в месте падения капли вверх подпрыгивает струйка воды, как от нее отрывается капелька, продолжающая свое движение вверх. Такая капелька имеет довольно высокую скорость. Во всяком случае, по босым ногам бьет чувствительно. Казалось бы, что при попадании капли дождя в лужу, эта капля должна просто уйти в глубину воды, раствориться в своей родной среде.
Исследователь Ф.Киллинг, снимая высокоскоростной кинокамерой явления, происходящие в момент попадания капли воды на водную поверхность, обнаружил все то же явление кумуляции, что и при взрыве кумулятивного боеприпаса, только с обратным знаком. Исследовать то, что происходит при взрыве снаряда невозможно по ряду технических причин. А вот вода позволяет отследить все фазы этого процесса.Рассмотрим очень упрощенно процессы, происходящие при падении капли в воду. Рссматривать подробно и во всех промежуточных фазах мы не будем, тк вы всеровно не поймете. У Киллинга развитие процесса падения капли и образования кумулятивной струи и ударного ядра отслеживаются более чем на 100 снимках.
Первый этап для нас неинтересен. Капля приближается к поверхности. Впрочем, здесь итересно, что капля в полете имеет вовсе не ту форму, как все думают, а вид утолщенного диска. "Каплевидную форму" капля имет только в момент отрыва ее от крана),
Этап второй. Капля внедряется в поверхность воды. Она еще сохраняет свою целостность и ведет себя подобно камню. Начинается процесс образования воронки.
Промежуточные этапы опускаем, т.к. они для нас неинтересны и лишь подробно описывают изменение поведения капли от поведениея подобно камню, до ее полного разрушения.
Третий этап. Мы видим воронку параболообразной формы. Давление воды в области, окружающей воронку значительно превышает давление воды в целом в данной водной среде. Этот момент можно приравнять к моменту начала процесса взрыва взрывчатого вещества. Т.е. с этого момента явления, происходящие в боеприпасе и в воде идентичны.
Этап четверый. Микрокапельки воды под воздействием давления устремляются в геометрический центр параболы. Это фокус кумуляции. При взрыве боеприпаса это место максимального давления.
Этап пятый. Капельки сливаются в единую струю, идущую с большой скоростью вверх. Это и есть кумулятивная струя. При взрыве боеприпаса такая струя и пробивает броню. Кто видел пробоины от кумулятивных снарядов, тот не мог не заметить, что отверстие в броне от такого снаряда намного меньше его калибра. Естественно. Толщина струи намного меньше диаметра воронки.
Этап шестой. Те микрокапельки, которые оказались в передовой части струи получают достаточно большую кинетическую энергию и устремляются далеко вверх. Происходит формирование ударного ядра. Наблюдая, падение капли в воду, в этот момент мы видим подпрыгнувшую довольно далеко вверх каплю из того места, куда упала дождевая капля.
Этап седьмой, заключительный. Ударное ядро продолжает свое движение, а остальные капельки воды, израсходовав свою энергию, начинают возвращаться обратно в водную среду.
Здесь достаточно наглядно ясно, что кумулятивная струя существует довольно непродолжительное время и неизбежно разрушается. Поэтому, если на пути снаряда стоит экран, то кумулятивная струя, сформировавшись при встрече снаряда с экраном, пройдя путь до брони уже разрушается, а для образования ударного ядра не хватило пространства. Если же боеприпас подорвать на достаточном удалении от экрана, то сформировавашееся ударное ядро, имея высокую кинетическую энергию, легко пробивает и экран и броню.
Оболочки