Вопрос №1. Внегалактическая астрономия. Морфологическая классификация галактик.
Внегалактическая астрономия - раздел астрономии, изучающий небесные тела и их системы, находящиеся за пределами нашей звёздной системы — Галактики. Формированию этого раздела астрономии предшествовал длительный период выяснения того, какие типы небесных светил входят в состав нашей звёздной системы и какие находятся вне её. В конце 1-й четверти 20 в. было окончательно установлено, что наша звёздная система имеет конечные размеры и в то же время не исчерпывает собой всей звёздной Вселенной. Она получила название Галактика (с прописной буквы). Было доказано существование также и других звёздных систем, которые по своей замкнутости и независимому положению в пространстве получили названия галактик (со строчной буквы). Совокупность всех галактик, называемая метагалактикой, представляет собой самую обширную систему из известных науке. Первыми обнаруженными внегалактическими объектами являются цефеиды - класс пульсирующих переменных звёзд, т.е. таких звезд, блеск которых переодически может изменяться, с довольно точной зависимостью период—светимость, обнаруженные в 1920-е годы XX века в спиральных туманностях Эдвином Хабблом. До второй мировой войны исследование галактик велось только в видимом диапазоне. Технологическое развитие позволило наблюдать внегалактические объекты во всех областях электромагнитного спектра. Благодаря этому и повышению чувствительности современных телескопов и инструменты в дополнение к звёздам и туманностям Галактики и новые явления, такие, как активные ядра галактик, газ и пыль в межзвёздной среде галактик и, наконец, космического фонового излучения. Наиболее далёкие из ярчайших галактик, расстояния до которых удалось установить, находятся от нас на расстояниях, составляющих более миллиарда Парсек - распространённая в астрономии внесистемная единица измерения расстояний. Обычная мера внегалактических расстояний — мегапарсек, сокращенно Мпк, соответствует расстоянию 1 млн. парсек, или 3262 тысячи световых лет. Точное значение этого наибольшего расстояния указать невозможно, так как, во-первых, почти ежегодно становятся известными всё более и более удалённые объекты, а во-вторых, потому, что результат вычисления расстояний на основании величин, получаемых непосредственно из наблюдений, зависит от предполагаемых свойств пространства метагалактики, недостаточно хорошо изученных. Тем не менее можно утверждать, что самые далёкие из известных галактик не находятся у границ метагалактики.
Результаты исследований, полученные В. а., являются основным наблюдательным материалом для космологии ( учение о Вселенной как едином целом и о всей охваченной астрономическими наблюдениями области Вселенной как части целого). Изучая проявления природы в наиболее крупных масштабах, В. а. сталкивается с новыми, ранее неизвестными явлениями и, может быть, даже с новыми законами природы. Результаты В. а. существенно помогают изучению нашей Галактики. Это обусловлено тем, что другие галактики мы наблюдаем извне и в целом, а нашу Галактику мы вынуждены изучать, находясь внутри неё, что в ряде отношений труднее.
Попытки классифицировать галактики начались одновременно с обнаружением первых туманностей со спиральным узором Лордом Россом в 1845-50 гг. Впрочем, в то время господствовала теория, согласно которой все туманности принадлежат нашей Галактике. То, что ряд туманностей имеет негалактическую природу, было доказано лишь Э.Хабблом.
Последовательность Хаббла — это морфологическая классификация (по визуальным признакам) предложенная Эдвином Хабблом в 1926 году и модифицированная им же в 1936 году, известная под названием Камертон Хаббла, поскольку традиционная иллюстрация этой последовательности имеет сходство с этим инструментом.
В своей классификации Хаббл разделил все галактики на 3 обширных класса, основываясь на их внешнем виде на фотографических пластинках, экспонированных в синем (В) фильтре.
Эллиптические галактики имеют гладкую эллиптическую форму (от сильно сплющенных, до почти круглых) без отличительных деталей с равномерным уменьшением яркости от центра к периферии. Они обозначаются буквой E и цифрой, которая является индексом сплющенности галактики. Так, круглая галактика будет иметь обозначение E0, а галактика, у которой одна из больших полуосей в двое больше другой, E5. Форма наиболее сплющенных (E7) заметно отличается от эллипса. Эллиптические галактики состоят из старых звёзд и практически полностью лишены газа.
Спиральные галактики состоят из уплощенного диска из звезд и газа, в центре которого находится сферическое уплотнение, называемое балджем, а также обширного сферического гало – компонента простирающегося за видимой частью галактики. В плоскости диска формируются яркие спиральные рукава, состоящие преимущественно из молодых звезд, газа и пыли. Хаббл разделил все известные спиральные галактики на нормальные спирали (обозначаются символом S) и спирали с баром (SB), которые в отечественной литературе часто называют галактиками с перемычкой или пересеченными. В нормальных спиралях спиральные ветви тангенциально отходят от центрального яркого ядра и простираются на протяжении одного оборота. Число ветвей может быть различно: 1, 2, 3,… но чаще всего встречаются галактики только с двумя ветвями. В пересеченных галактиках спиральные ветви отходят под прямым углом от концов бара. Среди них тоже встречаются галактики с числом ветвей, не равным двум, но, в основной массе, пересеченные галактики обладают двумя спиральными ветвями. В зависимости от того, являются ли спиральные рукава плотно закрученными или клочковатыми, или же по соотношению размеров ядра и балджа, добавляют символы a, b или c. Так для галактик Sa характерен большой балдж и туго закрученная регулярная структура, а для галактик Sc — небольшой балдж и клочковатая спиральная структура. К подклассу Sb относят галактики, которые по какой-либо причине нельзя отнести к одному из крайних подклассов: Sa или Sc. Так, галактика M81 обладает большим балджем и клочковатой спиральной структурой. В 1936 году был добавлен класс Линзовидных галактики, которые имеют то же строение, что и спиральные, но в них отсутствует спиральная структура. Обозначаются S0. Если линзовидную галактику видно сбоку, то она отличается от эллиптической более сильным сжатием и наличием тёмного пылевого слоя
Неправильные галактики — это галактики, не вписывающиеся в последовательность Хаббла. Они не обнаруживают ни спиральной, ни эллиптической структуры. Чаще всего такие галактики имеют хаотичную форму без ярко выраженного ядра и спиральных ветвей. В процентном отношении составляют одну четверть от всех галактик. Большинство неправильных галактик в прошлом являлись спиральными или эллиптическими, но были деформированы гравитационными силами.Существует два больших типа неправильных галактик:
1)Неправильные галактики первого типа (Irr I) представляют собой неправильные галактики, имеющие намеки на структуру, которых, однако, не достаточно, чтобы отнести их к последовательности Хаббла. Существует два подтипа таких галактик — обнаруживающих подобие спиральной структуры (Sm), и с отсутствием таковой (Im).
2) Неправильные галактики второго типа (Irr II) — это галактики, не имеющие никаких особенностей в своей структуре, позволяющих отнести их к последовательности Хаббла.
Третий подтип неправильных галактик — так называемые карликовые неправильные галактики, обозначаемые как dI или dIrrs. Этот тип галактик в настоящее время считается важным звеном в понимании общей эволюции галактик. Вызвано это тем, что они обнаруживают тенденцию низкого содержания металлов и экстремально высокого содержания газа и поэтому подразумеваются схожими с самыми ранними галактиками, заполнявшими Вселенную. Полистав любой из атласов галактик, можно убедиться, что наряду с нормальными галактиками есть объекты особенные, не укладывающиеся в рамки приведенной выше классификации. Это могут быть как галактики, которые нельзя отнести к какому-либо из перечисленных типов, так и галактики, принадлежащие к определенному классу, но в то же время обладающие особенностями, не предусмотренными классификацией. Обычно при классификации подобных объектов к обозначению типа добавлялся индекс p (первая буква английского слова peculiar, что в переводе означает "особенный", "необычный"). Из сказанного выше следует, что не существует четкого определения понятия "пекулярная галактика". Иногда отнесение галактики к пекулярному типу оспаривалось. Так, например, Б.А. Воронцов-Вельяминов считал, что взаимодействующие галактики не являются пекулярными, поскольку видимые изменения их формы вызваны возмущениями близких соседей. Однако среди взаимодействующих систем встречаются объекты столь причудливой формы, что их трудно не назвать пекулярными.
Также выделяются так называемыеСейфертовские галактики — спиральная или неправильная галактика с активным ядром, спектр излучения которого содержит множество ярких широких полос, что указывает на мощные выбросы газа со скоростями до нескольких тысяч километров в секунду. Такие галактики впервые описаны в 1943 году Карлом Сейфертом. К числу сейфертовских галактик относится около 1 % наблюдаемых спиральных галактик. Очень распространена гипотеза, объясняющая активность ядер, предполагает наличие чёрной дыры (массой в десятки или сотни миллионов масс Солнца) в центре галактики.
В середине ХХ столетия крупные телескопы позволили астрономам исследовать положения и формы десятков тысяч слабых галактик. Обращало на себя внимание, что часть галактик (5 – 10%) имеет весьма странный, искажённый вид, так что их иногда трудно отнести к какому-то морфологическому типу.Некоторые из них выглядят сильно ассиметричными, словно помятыми. Иногда две галактики окружены общим светящимся звёздным туманом либо связаны звёздной или газовой перемычкой. А в отдельных случаях от галактик отходят длинные хвосты, протянувшиеся на сотни тысяч световых лет в межгалактическое пространство. Чаще всего эти необычные звёздные системы являются членами пар или тесных групп, и это говорит о том, что все перечисленные особенности – результат влияния галактик друг на друга. Известный советский астроном Борис Александрович Воронцов-Вельяминов, первым начавший исследование таких объектов, дал им название «взаимодействующие галактики». Он описал и занес в каталоги тысячи взаимодействующих систем. Статистические исследования привели к выводу, что большинство взаимодействующих галактик – это не случайно встретившиеся странники во Вселенной, а родственники, связанные общим происхождением. В своём движении они то сближаются, то удаляются друг от друга. Гравитационные поля близких звёздных систем создают приливные силы, достаточные для того, чтобы исказить форму галактик или изменить их внутреннюю структуру.
Некоторые галактики являются не только источниками света, но и мощными источниками радиоволн. Их называют «радиогалактиками». Конечно, все галактики испускают длинноволновое радиоизлучение, так как они содержат остатки сверхновых и другие дискретные радиоисточники, но количество энергии, излучаемой радиогалактиками, совсем иного порядка величины. Термин «Радиогалактика» был введён в результате отождествления в 1949 году мощных источников космического радиоизлучения с относительно слабыми источниками оптического излучения — далёкими галактиками. Квазар — особо мощное и далёкое активное ядро галактики. Квазары являются одними из самых ярких объектов во Вселенной — их мощность излучения иногда в десятки и сотни раз превышает суммарную мощность всех звёзд таких галактик, как наша. Следы родительских галактик вокруг квазаров были обнаружены лишь позднее. В первую очередь квазары были опознаны как объекты имеющие электромагнитное излучение (включая радиоволны и видимый свет) и настолько малые угловые размеры, что в течение нескольких лет после открытия их не удавалось отличить от «точечных источников» — звёзд. В последние годы было создано много теорий с целью объяснить феномен квазара. Выдвинуто предположение, что это явление может быть вызвано вспышками многих сверхновых, быстро следующими одна за другой, но непонятно, почему это могло бы происходить. А теории, исходящие из возможного существования антивещества или черных дыр, выглядят весьма сомнительными. Радиогалактики и квазары формально относятся к разным классам объектов. Но уже давно астрономы заподозрили, что различие между ними только кажущееся. Возможно, что квазары и некоторые типы радиогалактик (в первую очередь сейфертовские системы) – это различные эволюционные стадии объектов одного класса, но для уверенного вывода явно не хватает надежной информации.
Галактика является гравитационно-связанной космической системой: силы тяготения играют решающую роль в ее существовании и наряду с силами инерции и силами электромагнитной природы определяют структуру и основные свойства Галактики. Галактика состоит из 200-350 миллиардов звезд и множества других космических объектов: более6000 галактических молекулярных облаков, содержащих в себе до 50% межзвездного газа, туманностей, планетных тел и их систем, нейтронных звезд, белых и коричневых карликов, черных дыр, космической пыли и газа. Диск Галактики пронизан крупномасштабным магнитным полем, удерживающим частицы космических лучей и заставляющим их двигаться вдоль магнитных линий по винтовым траекториям. 85-95% видимой массы Галактики сосредоточено в звездах, 5-15% - в межзвездном диффузном газе.
Галакти́ческий це́нтр — сравнительно небольшая область в центре нашей Галактики, радиус которой составляет около 1000 парсек и свойства которой резко отличаются от свойств других её частей. Образно говоря, галактический центр — это космическая «лаборатория», в которой и сейчас происходят процессы звёздообразования и в которой расположено ядро, когда-то давшее начало конденсации нашей звёздной системы.
Возникновение галактик — появление крупных гравитационно-связанных скоплений материи, имевшее место в далёком прошлом Вселенной. На данный момент единой теории возникновения и эволюции галактик не существует. Есть несколько конкурирующих теорий, объясняющих это явление, но каждая имеет свои серьёзные проблемы.
Иерархическая теория: Согласно первой, после возникновения первых звёзд во Вселенной начался процесс гравитационного объединения звёзд в скопления и далее в галактики. В последнее время эта теория поставлена под сомнение. Современные телескопы способны «заглянуть» так далеко, что видят объекты, существовавшие приблизительно через 400 тыс. лет посл Большого взрыва. Обнаружилось, что на тот момент уже существовали сформировавшиеся галактики. Предполагается, что между возникновением первых звёзд и вышеуказанным периодом развития Вселенной прошло слишком мало времени, и галактики сформироваться не успели бы.
Инфляционная теория: Другая распространённая версия заключается в следующем. Как известно, в вакууме постоянно происходят квантовые флуктуации (термин, характеризующий любое колебание или любое периодическое изменение). Происходили они и в самом начале существования Вселенной, когда шёл процесс инфляционного расширения Вселенной, расширения со сверхсветовой скоростью. Это значит, что расширялись и сами квантовые флуктуации, причём до размеров, возможно, в 101012 раз превышающих начальный. Те из них, которые существовали в момент прекращения инфляции, остались «раздутыми» и таким образом оказались первыми тяготеющими неоднородностями во Вселенной. Получается, что у материи было порядка 400 тыс. лет на гравитационное сжатие вокруг этих неоднородностей и образование газовых туманностей. А далее начался процесс возникновения звёзд и превращения туманностей в галактики.