Физические методы испытания прочности бетона

Физические методы обследования конструкций основаны на законах распространения упругих волн в реальных средах, взаимодействия различного рода излучений с испытываемым материалом, металла с электромагнитным полем и т.д.

Физические методы испытания прочности бетона могут быть подразделены на резонансные, импульсные ультразвуковые и ударные. Кроме того для определения плотности бетона и дефектов в нем применяются методы, основанные на измерении степени поглощения и рассеивания рентгеновских и гамма-лучей.

Резонансный метод. При помощи резонансного метода определяют частоту собственных колебаний образца с последующим расчетом по этой характеристике динамических модулей упругости первого

рода (модуля Юнга) E

Резонансный метод при обследовании зданий можно применять только для испытаний лабораторных образцов и некоторых изделий небольшого объема с точными размерами, поэтому этот метод нельзя отнести к неразрушающим методам испытания реальных конструкций.

Импульсный ультразвуковой метод. Он нашел широкое применение для неразрушающих испытаний железобетонных конструкций. Этот метод основан на измерении скорости распространения в бетоне продольных ультразвуковых волн и степени их затухания.

Скорость продольных ультразвуковых волн u определяют по формуле

u=S/(t-t0), (1.41)

где s - длина пути распространения ультразвука (база измерения), мм;

t - время распространения ультразвука, мкс;

t0 - постоянная поправка ультразвукового прибора, определяемая при сомкнутых щупах. d и второго рода (модуля сдвига) Gd и логарифмического декремента затухания d. Качество бетона можно оценить непосредственно по указанным характеристикам или путем определения прочности из зависимостей, связывающих Rm с Ed; Gd и d.

Для возбуждения ультразвуковых волн и измерения времени их прохождения через бетон служит специальная электронно-акустическая аппаратура - импульсные ультразвуковые приборы. Из многих известных ультразвуковых приборов для определения прочности бетона наиболее подходят прибор УКБ-1М (ультразвуковой контроль бетона) и прибор «Бетон-ЗМ-Транзистор». Последний собран полностью на полупроводниках и в два раза легче первого.

Ультразвуковые приборы состоят из источника электрических импульсов, излучателя, преобразующего электрические импульсы в ультразвуковые механические волны, щупа - приемника, преобразующего ультразвуковые волны, прошедшие через бетон, в электрические импульсы, усилителя электрических импульсов и индикатора - электронно-лучевой трубки.

Имеющееся в приборе электронное устройство, называемое «ждущей задержанной развертки», включается одновременно с пуском импульсного генератора. Развертка смещает электронный луч по экрану индикатора слева направо. При этом в левой части экрана индикатора возникает вертикальная отметина, соответствующая моменту посылки импульса, а в правой - изображение прошедших через бетон ультразвуковых импульсов. Электронный генератор создает на экране индикатора электронную школу меток времени в виде вертикальных отметок с определенными интервалами, по числу которых находят время прохождения ультразвукового импульса через бетон.

Скорость ультразвука связана функциональной зависимостью с динамическим модулем упругости бетона первого рода Еd. Значение Еd можно вычислить по формулам, если известны длина ультразвуковой волны в бетоне, поперечные размеры тела и измеренная в опыте скорость ультразвука u. Длина ультразвуковой волны и бетоне определяется по формуле

l=u/f0, (1.42)

где f0 - собственная частота продольных колебаний образца, измеряемая при опыте.

При неограниченной среде, когда размеры изделия значительно больше длины ультразвуковой волны l (l для бетона колеблется в пределах 15...25 см), значение Еd можно рассчитать по формуле

Еd=u2r(1+m)(1-2r)/(1-m), (1.43)

где r - плотность бетона;

m - коэффициент Пуассона, принимаемый для бетона равным 0,16...0,2 или более точно вычисляемый по формуле

[u/(2f0l)]2=(1-m)/[(1-2m)(1+m)], (1.44)

здесь l - длина образца.

Для среды, ограниченной одним измерением, т.е. для плит, прозвучиваемых с торцов (l больше толщины плиты), значение Еd определяется из формулы

Еd=u2r(1-m2). (1.45)

Для среды, ограниченной двумя измерениями, т.е. для стержней, прозвучиваемых с торцов (l больше поперечных размеров стержня), значение Еd находится из выражения

Еd=u2r. (1.46)

Прочность бетона на сжатие устанавливается по вычисленным значениям Еd с помощью заранее установленных экспериментальным путем зависимостей для бетонов определенного состава. Эти зависимости обычно выражают в виде тарировочного графика «прочность бетона-динамический модуль упругости».

Такая зависимость может быть представлена в виде формулы

(1.47)

где b2 - эмпирический коэффициент, зависящий от состава бетона.

Значение b60/. 2 принимается по табл. 1.10 /

Исследователями установлена непосредственная статистическая зависимость между прочностью бетона на сжатие и скоростью распространения ультразвуковых волн, представленная ими в виде тарировочных графиков.

Точность определения прочности бетона импульсным методой с применением тарировочных кривых составляет 8...15% /60/.

Следует иметь в виду, что тарировочные зависимости между Rm и u, a также между Rm и Еd можно использовать с достаточной точностью только для определения Rm бетонов, для которых строились эти зависимости. Расчет прочности по тарировочным графикам, формулам и таблицам, полученным для бетонов других составов, может привести к значительным ошибкам. Впрочем, это замечание касается всех неразрушающих методов контроля прочности бетона.

При испытании конструкции, изготовленных из бетона неизвестного состава, значения u и Rm определяют на вырезанных кубах или кернах. При этом прочность бетона в конструкциях рассчитывают по формуле

Rm= Rmc(us/uc)4(gs/gc)2, . (1.48)

где Rm - средняя прочность бетона в кубах (кернах);

u - скорость ультразвука на исследуемом участке конструкции;

uc - средняя скорость ультразвука в кубах (кернах);

gs - объемный вес бетона в конструкции;

gформуле (1.48) точность определения прочности бетона составляет ±20% /60/. c - объемный вес бетона в кубах (кернах). При расчете по

При испытании бетона ультразвуковым импульсным методом нужно

соблюдать ряд условий:

1) все измерения баз прозвучивания должны быть выполнены с точностью до 1 мм;

2) направление прозвучивания должно быть перпендикулярно к укладываемым слоям бетона;

3) точки приложения щупов не должны совпадать с арматурными стержнями. Следует избегать пересечения направления прозвучивания с арматурой, особенно при диаметре стержней более 8 мм /60/.

Если содержание арматуры в конструкции более 50 кг/м3, влияние армирования на скорость ультразвука учитывается формулой

u=s(1-a/100)/t, (1.49)

где а - величина поправки, которая вычисляется по результатам ранее проведенных опытов при построении тарировочной кривой, %:

a=(us-ub)100/us, (1.50)

здесь us - скорость ультразвука в бетоне с арматурой;

ub - скорость звука в бетоне без арматуры.

А.К. Третьяков и A.M. Филонидов /60/ предложили кривые для вычисления поправки а.

Следует иметь в виду, что при напряжениях в бетоне, превышающих 30% предела прочности на сжатие, за счет образования микротрещин скорость ультразвука уменьшается. В случае приближения напряжения к пределу прочности снижение скорости ультразвука достигает 30...35%.

С целью повышения достоверности ультразвукового импульсного метода Ю.С. Уржумцев /60/ предложил оценивать прочность по двум и трем ультразвуковым характеристикам. В качестве упругой характеристики бетона принята скорость распространения ультразвука u или динамический модуль упругости Еd, а вязкопластические свойства бетона характеризуются коэффициентом затухания звука a. Для определения a измеряют амплитуду прошедших через бетон импульсов и время их затухания. В приборе ИМ-4 имеется устройство, упрощающее определение коэффициента затухания a.

Применение ультразвукового импульсного метода предусматривает использование достаточно сложной аппаратуры и квалифицированных специалистов.

С помощью ультразвукового импульсного метода можно выявить внутренние дефекты конструкции (пустоты, каверны, участки с пониженной плотностью) и определить глубину трещин.

Ударный метод. Мощность ультразвуковых колебаний при использовании импульсного метода недостаточна для испытания конструкций большой длины, например дорожных и аэродромных покрытий, и некоторых других массивных сооружений. В этих случаях применяется ударный акустический метод.

Оценка качества бетона при испытании ударным методом основывается на измерении скорости распространения в нем продольных волн, вызванных механическим ударом. По физической сущности определение Rm ударным методом аналогично импульсному и базируется на использовании зависимости предела прочности бетона на сжатие от скорости распространения звуковых волн в конструкции.

Ударный метод состоит в том, что по исследуемой конструкции наносится удар или серия ударов ручным либо электрические молотком. На поверхности испытываемой конструкции устанавливают последовательно на заданном расстоянии (базе измерения) два звукоприемника. Звукоприемники располагают таким образом, чтобы база измерения была не менее четырех толщин конструкции, а расстояние от первого звукоприемника до места удара не превышало трех ее толщин.

Принятый первым приемником звуковой импульс превращается в нем в электрический сигнал, который после усиления включает специальное счетное устройство. Дойдя до второго звукоприемника, звуковая волна превращается в электрический сигнал, который выключает счетное устройство, фиксирующее время прохождения звукового импульса между двумя звукоприемниками.

Прочность бетона определяют на основании зависимости по тарировочной кривой или по специальным таблицам. Поскольку в ударном методе применяются низкие звуковые частоты, точность измерения невысока.

2.Нивелирование,теодолитная съёмка.

Для определения соответствия проектному положению строительных конструкций, включая деформации всех видов, применяются геодезические приборы и приспособления (теодолиты, нивелиры). Для измерения кренов и колебаний зданий применяют оптические лазерные приборы вертикального проецирования.

При обследовании конструкций применяют теодолиты Т2, 2Т5К, нивелиры H 1, H 05, КОН-007, оптические центровочные приборы ОЦП-2, «Зенит-ОЦГТ», «Зенит-ЛОТ» и др.

Широко используются фототеодолиты различных марок с приспособлениями для обработки данных измерений в виде стереофотограмметрических камер, инженерных фотограмметров, стереокомпараторов и др. Для повышения точности геодезических измерений используются лазерные приборы.

Определение прочностных и деформативных свойств материалов, из которых изготовлены и возведены конструкции зданий, осуществляется методами прямых испытаний образцов. Несмотря на достаточно высокую трудоемкость этих работ, данный метод позволяет получить более достоверные результаты.

Для извлечения образцов широко используются универсальные кернообразователи с алмазными коронками. Они позволяют получать образцы материала в виде цилиндров при различном расположении конструкций. В результате механических испытаний определяются: прочность, плотность, водонепроницаемость и другие физико-механические характеристики.

Для получения требуемой достоверности испытаний используются вероятностно-статистические методы, учитывающие случайный характер распределения свойств материала.

Извлечение опытных образцов из конструкции часто затруднительно. Поэтому при обследовании зданий широко используются неразрушающие методы испытаний.

Приборы для определения прочностных и деформативных свойств материалов конструкций базируются на применении:

3.Метод пластических деформаций.

механических методов - методы пластических деформаций, основанные на вдавливании штампа в поверхность материала (молоток Кашкарова, склерометр Шмидта, прибор КМ, молоток Физделя и др.); методы испытаний на отрыв и скалывание, основанные на отделении бетона путем отрыва со скалыванием (гидравлические пресс-насосы); метод упругого отскока - прибор КМ и др.;

Молоток Кашкарова

Физические методы испытания прочности бетона - student2.ru

Назначение:
Определение прочности бетона в конструкциях методом ударного воздействия по размеру отпечатка по ГОСТ 22690-88.
Принцип действия:
В молоток вставляется металлический стержень с известной прочностью. Затем молотком наносят удар по поверхности бетона. При помощи углового масштаба или измерительной лупы замеряют размер отпечатков, получившихся на бетоне и стержне. Зная марку стали из которой сделан стержень (а следовательно, и его прочность), из соотношения диаметров отпечатков можно вычислить прочность бетона.

Общее описание:
Молоток состоит из индентора (шарика), стакана, пружины, корпуса с ручкой, головки и сменного эталонного стержня. Стержни являются расходным материалом.
Продаётся как отдельно, так и в комплекте (молоток, угловой масштаб и 10 стержней).
Диапазон определения прочности - 50...500 кг/см2

Масса, кг : 0,95 Размеры, мм : 253х40х53

Наши рекомендации