Легирующие элементы в сталях

Для улучшения свойств в стали дополнительно вводят легирующие элементы (ЛЭ). Наиболее часто используют хром (Cr), никель (Ni), марганец (Mn), кремний (Si), молибден (Mo), вольфрам (W), ванадий (V), ниобий (Nb), титан (Ti).

Коррозия – разрушение металла под действием окружающей среды.

Электрохимическая коррозия происходит под воздействием электролитов: водных растворов кислот, щелочей, солей, морской и речной воды, влажного воздуха (атмосферная коррозия), почвы и т.д

Коррозионно-стойкие (нержавеющие) стали – это стали устойчивые против электрохимической коррозии. Для защиты от электрохимической коррозии в сталь вводят хром в количестве не менее 13%, при этом электрохимический потенциал становится положительным

Хромоникелевые нержавеющие стали аустенитного класса имеют пониженное содержание углерода (0,04…0,17%С) для предотвращения образования карбидов, содержат 17…19%Cr для защиты от коррозии и 8…12%Ni для стабилизации аустенитной структуры: 12Х18Н8, 08Х18Н10. В равновесном состоянии стали имеют структуру аустенит+карбиды хрома М23С6. Путем закалки от температуры 1100…1150°С в воде или на воздухе обеспечивается растворение карбидов и получение однофазной структуры легированного аустенита.

Эти стали не упрочняются термообработкой, повышение прочности достигается наклепом в результате холодной пластической деформации. Хромоникелевые стали обладают высокой пластичностью, коррозионной стойкостью в окислительных и других агрессивных средах, хорошей обрабатываемостью давлением.

Аустенитные хромоникелевые стали склонны к межкристаллитной коррозии (МКК) - коррозии по границам зерен. Это происходит из-за локального выделения карбидов хрома и обеднения хромом пограничных участков аустенита. Чем меньше в стали углерода, тем ниже ее склонность к МКК. Для снижения склонности к МКК в стали вводят титан или ниобий (например, 12Х18Н9Т или 08Х18Н12Б), которые связывают углерод в карбиды TiC или NbC, сохраняя весь хром в твердом растворе.

Аустенитные хромоникелевые стали отличаются широким масштабом применения для различных изделий, работающих в агрессивных средах, в частности, в химической и пищевой промышленности

  1. Медь и ее сплавы. Состав, структура, маркировка. Свойства и применение медных сплавов.

Медь и ее сплавы

Свойства меди:

· Тпл=1083°С,

· кристаллическая решетка ГЦК (полиморфных превращений не испытывает),

· высокая тепло- и электропроводность;

· коррозионная стойкость;

· высокая пластичность;

· высокие технологические свойства: хорошо обрабатывается давлением, сваривается, легко поддается пайке, полируется.

Различают две основные группы медных сплавов: латуни и бронзы.

Латуни

Латуни – сплавы меди с цинком. Маркируются буквой Л и числом, показывающим содержание меди (например, латунь Л68 содержит 68% Cu и 32% Zn). В марках многокомпонентных латуней содержатся буквенные обозначения элементов, числа последовательно показывают содержание меди и каждого легирующего элемента. Например, латунь ЛАН59-3-2 содержит 59%Cu, 3%Al, 2%Ni (остальное Zn).

Латуни по структуре делят на две группы:

· однофазные со структурой α-твердого раствора, содержат <39%Zn;

· двухфазные со структурой α + β', содержат от 39% до 45%Zn.

Однофазные α-латуни (Л96, Л80) обладают пластичностью, хорошо обрабатываются давлением в горячем и холодном состоянии, упрочняются холодной пластической деформацией. Однофазные латуни применяются в виде полос, лент, проволоки, а также в качестве деталей (шайбы, втулки и т.д.).

Двухфазные α+β'-латуни (Л59, Л60) по сравнению с однофазными латунями имеют бόльшую прочность и износостойкость, из них изготавливают втулки, гайки, токопроводящие детали.

Специальные латуни дополнительно легированы элементами: Sn, Pb, Si, Ni, Al, Fe, Mn.

Бронзы

Бронзы– это сплавы меди с различными элементами: оловом, алюминием, кремнием, хромом, кадмием, бериллием и др. Маркировка бронз начинается с букв Бр, далее следуют буквенные обозначения легирующих элементов, а затем цифры, показывающие содержание каждого элемента. Например, бронза БрОЦС6-6-3 содержит 6%Sn, 6%Zn, 3%Pb, остальное – медь.

Задача: Тн.р.=а*Тпл, где а = 0,3…..0,4 нет…..

Билет № 5

Закалка и отпуск конструкционных сталей. Назначение, получаемые структуры и свойства

Конструкционные стали общего назначения в зависимости от вида окончательной термообработки делят на:

· цементуемые;

· улучшаемые;

· рессорно-пружинные.

8.3.1. Цементуемые стали – низкоуглеродистые, содержат 0,1…0,3%С. Применяются для деталей, от поверхности которых требуется высокая твердость и износостойкость, а от сердцевины повышенная вязкость.

Термообработка: цементация+закалка+низкий отпуск. Структура на поверхности: МОТПIIОСТ, твердость поверхности 58…64 HRC. Структура сердцевины зависит от химического состава стали

Углеродистые стали: 15, 20, 25. Структура сердцевины П+Ф; Применяются для ненагруженных деталей - шестерен, крепежа, кулачков и др.

Низколегированные хромистые стали: 15Х, 20Х, 15ХФ, 20ХМ. Структура сердцевины - нижний бейнит. Применение - поршневые пальцы, распределительные валы, крестовины карданного вала и др.

Легированные Cr-Ni- и Cr-Mn-стали: 12ХН3А, 18Х2Н4ВА, 25ХГМ, 18ХГТ. Структура сердцевины – низкоуглеродистый мартенсит. Применяют их для высоконагруженных деталей, работающих в условиях износа, ударных и циклических нагрузок: шестерни ведущих мостов и главных передач грузовых автомобилей, валы коробок передач, полуоси и др.

. Улучшаемые стали – среднеуглеродистые, содержат 0,3…0,5% С. Применяются для деталей, работающих при ударных и циклических нагрузках: коленчатые и карданные валы, валы редукторов, оси, шатуны, шестерни и др.

Основная термообработка: улучшение (закалка + высокий отпуск). Структура: зернистый сорбит, который оптимально сочетает высокую прочность с высокой ударной вязкостью и выносливостью. Для малонагруженных деталей вместо улучшения проводится нормализация. Для деталей, работающих в условиях повышенного износа, после улучшения или нормализации проводят поверхностную закалку ТВЧ или азотирование.

Рессорно-пружинные стали – высокоуглеродистые, содержат 0,5…0,8%С. Применяются для пружин, рессор и других упругих элементов.

Термообработка: закалка + средний отпуск. Структура - троостит отпуска. Свойства: высокие пределы упругости, текучести и выносливости. Рессорно-пружинные стали должны иметь высокую прокаливаемость, пластичность, вязкость, релаксационную стойкость.

Углеродистые стали: 55, 60, 65, 70, 75, 80, 85. Применяются для пружин малого сечения (до 10 мм), эти стали имеют низкую релаксационную стойкость.

Легированные стали. Основными легирующими элементами в рессорно-пружинных сталях являются кремний (1…3% Si), марганец (~1% Мn), хром (~1%Cr), ванадий (~0,15%V), никель (до 1,7%Ni). Их вводят для повышения прокаливаемости, релаксационной стойкости и выносливости.

Кремнистые стали: 55С2, 60С2А, 70С3А применяют для автомобильных рессор, пружин вагонов. Кремний повышает прочность феррита, предел упругости, предел текучести, но способствует обезуглероживанию и графитизации. Эти недостатки устраняют добавками Cr, V, W, Ni: 60С2ХА, 65С2ВА, 60С2Н2А. Такие стали применяют для крупных тяжелонагруженных пружин и рессор.

Стали, не содержащие кремния, применяются для автомобильных рессор (50ХГА), клапанных пружин (50ХФА, 50ХГФА).

Предел выносливости рессор может быть повышен в 1,5…2 раза путем поверхностного пластического деформирования: гидроабразивной или дробеструйной обработкой.

1. Износостойкая аустенитная сталь (110Г13Л). Состав, структура, термическая обработка, применение.

Износостойкая аустенитная сталь Гадфильда 110Г13Л содержит 1,1%С, 13%Mn, (Л–литейная). Структура после литья: аустенит легированный + карбиды (Fe,Mn)3С. Для растворения хрупких карбидов и получения однородной аустенитной структуры сталь подвергают закалке в воде от температуры 1100°С.

Сталь обладает высокой износостойкостью в условиях динамического износа, благодаря способности аустенита к деформационному упрочнению (наклепу). При ударных нагрузках в поверхностном слое по границам зерна аустенита выделяются карбиды марганца. Это приводит к обеднению аустенита углеродом и легирующими элементами. В результате температуры МН и МК повышаются, аустенит частично превращается в мартенсит, что повышает твердость и износостойкость.

Применение: траки гусеничных машин, ковши экскаваторов, крестовины железнодорожных путей и т.п.

Деформируемые алюминиевые сплавы, упрочняемые термообработкой. Их состав, свойства, механизмы упрочнения. Явление возврата. Применение

Наши рекомендации