В) Электрохимический пробой диэлектриков

В) Электрохимический пробой диэлектриков - student2.ru Рис. 45 Зависимость электропрочности от времени.

Данный вид пробоя обусловлен тем, что при длительном нахождении в электрическом поле происходит изменение химического состава диэлектрика. Чем выше напряженность электрического поля, тем сильнее возбуждаются молекулы диэлектрика и время, необходимое для выхода материала диэлектрика из строя снижается. В то же время химически инертные диэлектрики имеют больше время работы. Зависимость времени безопасной службы материала диэлектрика от времени принято называть «кривой жизни» диэлектрика (рис.45).

Магнитные материалы

По характеру взаимодействия с магнитным полем все материалы принято делить на слабо взаимодействующие и сильно взаимодействующие материалы. Мерой взаимодействия материалов с магнитным полем является магнитная индукция (В), то есть средняя напряженность магнитного поля внутри материала при нахождении во внешнем магнитном поле напряженностью Н. Магнитная индукция является суперпозицией напряженности внешнего магнитного поля и намагниченности:

В = Н + 4pМ(3.1)

где М - намагниченность материала, то есть отношение векторной суммы элементарных магнитных моментов к объему материала.

У веществ слабо взаимодействующих с полем намагниченность невелика В » Н.К таким веществам относятся диамагнетики и парамагнетики. В диамагнетиках индукция ниже напряженности внешнего поля, а в парамагнетиках индукция выше напряженности внешнего поля. У веществ сильно взаимодействующих с полем намагниченность велика. К таким веществам относятся ферромагнетики, антиферримагнетики (ферриты), суперпарамагнетики, спиновые стекла.

Природа ферромагнетизма.

Движение электронов вокруг ядер атомов является элементарными токами, создающими магнитные моменты.

В) Электрохимический пробой диэлектриков - student2.ru Рис. 46. Зависимость обменного интеграла (А) от расстояния между атомами, отнесенного к радиусу незаполненной электронной оболочки (a/r).

Более строгое рассмотрение элементарных магнитных моментов свидетельствует о том, что у атома имеются магнитные моменты ядер, орбитальные магнитные моменты электронов и спиновые магнитные моменты электронов.

Согласно правилу Хунда заполнение электронных орбиталей производится таким образом, чтобы магнитный и механический моменты электронов были максимальны. У переходных металлов внутренние электронные орбитали (3d или 5f) заполнены не полностью. Поэтому у атомов таких элементом имеется значительный магнитный момент.

В том случае, когда внутренние орбитали атомов заполнены, не полностью происходит обмен электронами незаполненных орбиталей соседних атомов. При этом энергия атомов понижается на величину обменной энергии (Uобм). Величина обменной энергии зависит от квантовомеханической функции - обменного интеграла (А) и взаимной ориентации суммарных спиновых моментов соседних атомов: Uобм = -А (s1s2) (3.2)

При отношении расстояния между атомами к радиусу незаполненных оболочек большем 3 обменный интеграл положителен и для того чтобы обменная энергия вычиталась из общей энергии системы необходимо параллельная ориентация спиновых магнитных моментов соседних атомов. Такие вещества являются ферромагнетиками. При отношении а/r меньшем 3 обменный интеграл отрицателен и для того чтобы энергия системы была минимальной скалярное произведение магнитных моментов соседних атомов должно быть отрицательным. В этом случае магнитные моменты соседних атомов антипараллельны и такие вещества принято называть антиферромагнетиками. При равенстве отношения а/r 3 обменная энергия нулевая и взаимная ориентация магнитных моментов произвольна. Такие вещества являются парамагнетиками.

Таким образом, для того чтобы вещество было ферромагнитным необходимо выполнение двух условий:

1). В состав материала должны входить атомы переходных металлов, обладающих большими магнитными моментами;

2). Отношение расстояния между атомами к радиусу незаполненных электронных оболочек должно превышать 3.

Наши рекомендации