Получение огнеупорной модели.
После параллелометрии, нанесения рисунка каркаса протеза и получения бороздок, указывающих расположение нижнего края ретенционной части плеча кламмера, на все участки рабочей модели, имеющие поднутрения, наносят слой тугоплавкого воска или мольдина. Затем в параллелометре штифт-ножом сглаживают излишки во всех участках до отвесной цилиндрической поверхности. Такая подготовка модели предупреждает отрыв дублирующей массы при изъятии из нее гипсовой рабочей модели. Дополнительный слой воска не должен пересекать рисунка контуров каркаса и нанесенных бороздок.
Подготовленную модель погружают на 2—3 мин в воду и делают огнеупорную рабочую модель (рис. 160).
Рис. 160. Этапы получения дублированной модели из огнеупорной массы.
На поддон кюветы для дублирования помещают рабочую модель и при наличии зазоров закрывают их любым пластичным материалом (мольдин, пластилин). Поддон накрывают кюветой, имеющей 2—3 отверстия на торце. Предварительно в специальном устройстве или в сосуде на водяной бане разогревают, постоянно помешивая, гидроколлоидную массу. О готовности массы судят по ее консистенции и гомогенности: масса должна быть без комочков и температура ее не должна превышать 55—60°С. При температуре массы 38—45°С ее заливают в кювету через одно из отверстий на торце. Масса застудневает на воздухе в течение 30-45 мин, переходя в прочный эластичный гель. После этого необходимо кювету поместить под струю холодной воды на 15—20 мин, чтобы и внутренние слои массы затвердели. Сняв поддон кюветы, из массы извлекают гипсовую рабочую модель.
Полученная по гидроколлоидной массе форма и является точной формой для огнеупорной рабочей модели. Со стороны снятого поддона в центр слепка из гидроколлоидной массы устанавливают, вколов в нее, стандартный конус и заливают огнеупорной массой («Силамин», «Кристосил-2», «Бюгелит»). Эти массы приготавливают в соответствии с инструкцией. Они имеют небольшой процент расширения при затвердевании (0,2%) и термическое расширение при температуре 500—700°С не менее 0,8%. Вместе с объемным расширением супергипса при затвердевании это компенсирует усадку металла при его отверждении.
После отверждения огнеупорной массы и кюветы через заливочные отверстия выдавливают дублирующую форму. Освобождают огнеупорную модель от массы путем послойного срезания.
Все огнеупорные модели требуют специальной термохимической обработки. Термическую обработку при температуре 120—160°С производят в течение 30—40 мин в сушильном шкафу, предварительно прогретом до 40°С. Высушенную неостывшую модель на 30— 60 с помещают в расплавленный (150°С) закрепитель для придания прочности и гладкости поверхностным слоям модели.
Рис. 161. Рисунок каркаса бюгеля на огнеупорной модели.
На подготовленную таким образом огнеупорную модель наносят рисунок каркаса (рис. 161), ориентируясь на рисунок на рабочей гипсовой модели, а по насечкам определяют нижние границы ретенционной части. Затем по известной методике моделируют восковую композицию протеза. Литниковую систему создают из восковых дугообразно изогнутых заготовок, подводимых к наиболее толстым участкам. Литникобразующие штифты сводят к имеющемуся в модели отверстию, образованному при ее отливке стандартным конусом.
Затем следуют процесс нанесения на каркас облицовочного слоя литейной формы, формовка модели, литье и отделка каркаса.
2. Плавильные и литьевые аппараты.(вопр. 3 ––литье сплавов металлов)
3. Сплавы для литья на основе благородных и неблагородных металлов. (вопр. 2-7 ––Металлы и сплавы)
4. Методика отделения огнеупорной массы от металлического каркаса протеза.
5. Дентальные вращающиеся инструменты для обработки (отделки), шлифовки и полировки металлического каркаса протеза.
6. Абразивные материалы для обработки каркаса бюгельного протеза.
Все детали зубных протезов, выполненные из сплавов металлов, должны быть, тщательно обработаны. Обработка металлических деталей проводится в несколько этапов с целью повышения химической стойкости, снижения электролитического потенциала, улучшения гигиенического содержания зубных протезов.
На первом этапе необходимо с помощью различных режущих инструментов удалить с поверхности излишки материала, различного характера неровности (небольшие поры, неглубокие трещины, наплывы, грат, остатки литниковой системы).
Доказано, что даже небольшие царапины, а тем более трещины концентрируют напряжение.
Поверхность детали, толщина которой превышает 0,35-0,4 мм. шлифуют абразивными инструментами (круги различных размеров, фасонные головки, металлические фрезы), добиваясь большой чистоты. Чистота обработки зависит от качества абразивного материала, размера зерен, скорости движения и давления инструмента на поверхность. При быстром движений инструмента по поверхности с малой приложенной силой поверхность обрабатывается медленнее, зато снимается меньший слой, а следовательно, можно получить более гладкую поверхность. Мелкое абразивное зерно также способствует этому. Крупное абразивное зерно, видимое при осмотре инструмента, быстрее снимает поверхность металла, но оставляет глубокие насечки, поэтому вначале производят грубую, а затем среднюю и тонкую шлифовку. Для шлифовки используют фасонные головки с мелким зерном на керамической связке, алмазные абразивы или шлифующий инструмент на вулканитовой связке.
Важное свойство абразивного инструмента — его способность «самозатачиваться»: по мере истирания режущего зерна оно крошится, обнажая грани подлежащих зерен.
Оценка обработанной поверхности проводится визуально.
После шлифовки приступают к полировке металлической поверхности. Полировку можно проводить двумя способами: механическим и электрохимическим.
Механический способ полировки принципиально не отличается от метода шлифовки. Для полировки используют абразивные круги с очень мелким абразивным зерном, фетровые фильтры, волосяные и матерчатые щетки с обязательным применением полировочных паст. Полированием создают зеркально гладкую поверхность.
В ряде случаев сложность контуров поверхности позволяет подвести к ней быстро вращающийся полировочный инструмент. В таких случаях, а также для облегчения процесса окончательной обработки металлических деталей протезов применяют электрохимический способ.
Хороших результатов, т. е. почти гладкой поверхности, можно добиться, применяя пескоструйную обработку. Этот вид механического способа обработки поверхности металлического каркаса протезов проводят в специальном герметически закрытом пескоструйном (пескометном) аппарате. В сопло аппарата со струей воздуха под давлением 3—5 атм подается кварцевый песок, который и обрабатывает поверхность металла, снимая мелкие неровности поверхности. К струйной обработке прибегают после грубой и средней шлифовки.
Метод струйной обработки хорошо зарекомендовал себя при очистке металлических деталей от огнеупорной массы, позволив полностью отказаться от применения различных химических средств, не безопасных в производстве.
Микроудары частиц песка создают в поверхностных слоях металла наклеп, что делает протез значительно прочнее.