Минимальная масса делящегося материала, необходимая для осуществления цепной реакции называется критической массой
Приблизительные величины критической массы для U- 40 т, для U - 20 кг, для Pu -7 кг, для Сf-3 г.
Однако не все нейтроны последующего поколения вызывают деление. Некоторые нейтроны могут быть захвачены примесями или потеряны в объеме делящегося материала. Часть нейтронов теряется вследствие вылета из системы, имеющей конечные размеры. Относительное число нейтронов, вылетающих из системы и, следовательно, не участвующих в поддержании и развитии цепной реакции, зависит от размеров и формы системы.
Поэтому кроме критической массы для развития цепной ядерной реакции существенное значение имеет критический размер системы,ниже которого потеринейтронов настолько велики, что саморазвивающая цепная реакция невозможна. Утечка нейтронов в чистом веществе определяется площадью поверхности системы. Поэтому наиболее выгодной геометрической формой системы из делящегося материала является шар, так как сферическая форма характеризуется наименьшим отношением поверхности к объему.
Радиус шара, при котором коэффициент размножения нейтронов равен 1, называется критическим радиусом.
Эти положения легли в основу создания атомной бомбы, количество делящегося вещества в которой должно быть равно критической массе. Для осуществления взрыва атомной бомбы необходимо в короткий промежуток времени привести в соприкосновение ее отдельные части так, чтобы образовалась сверхкритическая масса.
Как уже отмечалось, критичность системы непосредственно связана с коэффициентом размножения. Его величину можно изменить в зависимости от выбранных условий в том или ином направлении и тем самым регулировать развитие цепной реакции. Как во взрывных устройствах, так и в реакторах для уменьшения вероятности утечки нейтронов и сокращения критических размеров систему, содержащую делящееся вещество, окружают отражателем. В качестве отражателей могут быть использованы и замедлители нейтронов: графит, ВеО, D2O. U является единственным изотопом, встречающимся в природе, который может поддерживать цепную реакцию деления, однако в ядерных реакторах могут быть получены
U и Pu из не делящихся U и Th, которые затем используются в качестве ядерного горючего.
Более тяжелый изотоп U захватывает (радиационный захват) медленные нейтроны с образованием составного ядра U, которое распадается до основного состояния с испусканием одного или нескольких гамма- квантов, бета- частицы, протона или альфа- частицы:
U(n, г) U Np Pu U
Таким образом, U с одной стороны является ядом для цепной реакции, с другой стороны в результате радиационного захвата возможно воспроизводство ядерного горючего с образованием делящихся Pu и U. Если ядерный реактор работает на смеси природного Th с U при радиационном захвате нейтрона торием возможно получение U:
Th (n, г) Th Pa U
Естественно, приведенные цепочки превращений схематичны; на самом деле они гораздо более сложные. Каждый из промежуточных изотопов может в свою очередь поглотить нейтрон и превратиться в более тяжелый изотоп последующего после b--распада. Но ядра могут распадаться и другими способами: выбрасывая a-частицу, либо испытывая протонный или двупротонный распад, вероятность которого возрастает с ростом заряда ядра Z.
Содержание радиоактивных изотопов в смеси продуктов непрерывно меняется; исчезают короткоживущие осколки деления, накапливаются дочерние радиоактивные изотопы- продукты распада.
Итак, в ядерном реакторе при делении урана-235 под действием медленных нейтронов образуется более 250 нуклидов 35 элементов с числом нуклонов от 72 до 161 , т.е. элементы от цинка (30Zn) до тербия (65Tb), большая часть которых радиоактивна. Из продуктов деления впервые были выделены в весомых количествах такие элементы как технеций (43Tc)и прометий (61Pm), не имеющие долгоживущих (сравнимых с возрастом Земли) изотопов, поэтому отсутствующих в природе.
Интересно отметить, что при делении образуются в значительных количествах стабильные изотопы таких ценных элементов как рутений (до 38 кг на 1 т делящегося продукта), родий (16 кг/т), палладий (7 кг/т), ксенон (13 м3/т).
Разделение смеси продуктов деления урана представляет определенные трудности и может производиться различными методами, используемыми в аналитической химии, на рассмотрении которых мы остановимся дальше.