Поведение составляющих чугуна при продувке

Все примеси в процессе продувки кислородам окисляются одновременно, но скорости их окисления различны: с наибольшей скоростью протекают реакции, максимально удаленные от равновесия. Мерой отклонения реакции от равновесия в общем случае является нестандартное изменение изобарно-изотермического потенциала Поведение составляющих чугуна при продувке - student2.ru , которое тем больше, чем выше химическое сродство элемента к кислороду в стандартных условиях. В начальный момент рафинирования с наибольшей скоростью окисляются примеси, имеющие максимальное химическое сродство к кислороду в стандартных условиях. Другие примеси окисляются одновременно, но с меньшими различными скоростями, в соответствии с химическим сродством к кислороду.

По ходу рафинирования концентрация в металле примеси, которая имеет максимальное химическое сродство к кислороду (например, кремний), быстро снижается, что приводит к уменьшению Поведение составляющих чугуна при продувке - student2.ru , снижению скорости окисления и, наконец, полному прекращению реакции. В дальнейшем поступающий в ванну кислород на эту реакцию больше не расходуется, а расходуется на другие реакции, одна из которых начинает играть ведущую роль. Обычно после существенного снижения концентрации кремния ведущей становится реакция окисления углерода и сохраняет эту роль до конца рафинирования, поскольку обычно не достигает состояния равновесия вследствие непрерывного отвода оксида из зоны реакции.

Поведение составляющих чугуна при продувке - student2.ru

Рис. 7.7. Распределение кислорода между отдельными реакциями по ходу рафинирования жидкого чугуна кислородом дутья:

Поведение составляющих чугуна при продувке - student2.ru — расход кислорода на окисление углерода; Поведение составляющих чугуна при продувке - student2.ru — то же, на окисление железа и накопление в металле;

Поведение составляющих чугуна при продувке - student2.ru — то же, на окисление кремния, марганца, фосфора и др.

Сказанное можно иллюстрировать схемой рис. 7.7, на котором общее количество кислорода, поступающего в ванну в каждый данный момент, принято за 100 %. В начале рафинирования (4 % [С]) основное количество кислорода расходуется на реакцию окисления кремния, ведущая роль, которой сохраняется недолго. Затем ведущей становится реакция окисления углерода и сохраняется до тех пор, пока концентрация углерода не достигнет низких значений (<0,05%). В области низких концентраций углерода, если продолжается окислительное воздействие на металл, происходит преимущественное окисление железа и заметное накопление кислорода в металле. По достижении 0,02 % С практически весь кислород расходуется на окисление железа, т. е. удаление углерода в процессе окислительного рафинирования прекращается.

Реакции окисления. В течение продувки за счет подаваемого в конвертер кислорода окисляется избыточный углерод, а также кремний, большая часть марганца и некоторое коли­чество железа. Окисление примесей жидкого чугуна — углерода, кремния и марганца можно представить следующими итоговыми реакциями:

Поведение составляющих чугуна при продувке - student2.ru

Поведение составляющих чугуна при продувке - student2.ru

Следует, однако, иметь в виду, что за счет непосредственного взаимодействия с газообразным кислородом окисляется лишь незначительная часть примесей. Окисление большей части примесей протекает по более сложной схеме — первоначально в зоне контакта кислородной струи с металлом окисляется железо: Поведение составляющих чугуна при продувке - student2.ru его окисление объясняется тем, что концентрация железа в несколько десятков раз больше концентрации других элементов, и поэтому с вдуваемым кислородом прежде всего контактируют атомы железа. Образующийся оксид FеО растворяется частично в металле: Поведение составляющих чугуна при продувке - student2.ru и частично в шлаке: Поведение составляющих чугуна при продувке - student2.ru и уже за счет этого растворенного в металле и шлаке кислорода окисляются прочие составляющие жидкого чугуна. Соответственно окисление, например, углерода идет по следующим схемам:

Поведение составляющих чугуна при продувке - student2.ru

Таким образом, для продувки в конвертере характерно прямое окисление железа в зоне контакта кислородной струи с металлом (в первичной реакционной зоне) и окисление прочих составляющих металла за счет вторичных реакций на границе с первичной реакционной зоной и в остальном объеме ванны.

Окисление кремния и марганца, так же как и углерода, начинается с момента подачи кислорода, причем весь кремний и большая часть марганца выгорают в первые минуты продувки. Более быстрое их окисление по сравнению c углеродом объясняется различием в химическом сродстве разных элементов к кислороду при различных температурах.

На рис. 7.8 приведена зависимость химического сродства ряда элементов к кислороду от температуры; при этом величина химического сродства тем больше, чем больше по абсолютной величине отрицательное значение ΔG. Из рис. 7.8 следует, что при температурах ниже 1450-1500 °С кремний и марганец обладают более высоким сродством к кислороду, чем углерод; при более же высоких температурах сродство углерода к кислороду превышает сродство марганца и кремния. В соответствии с этим марганец и кремний окисляются в начале продувки, когда температура в конвертере сравнительно невысока.

Поведение составляющих чугуна при продувке - student2.ru Рис. 7.8. Химическое сродство элементов к кислороду при различных температурах

Окисление кремния заканчивается в первые 3—5 мин продувки и в дальнейшем по ходу плавки жидкий металл кремния не содержит. Реакция окисления кремния протекает до его полного израсходования и является необратимой, поскольку продукт окисления — кислотный оксид SiO2, связывается в основном шлаке в прочное соединение 2СаО•SiO2.

Интенсивное окисление марганца наблюдается в начале продувки, когда при низких температурах его химическое сродство к кислороду велико; к 3—5 мин продувки окисляется около 70% марганца, содержащегося в чугуне. Кремний и марганец обладают более высоким сродством к кислороду, чем углерод; при более же высоких температурах сродство углерода к кислороду.

Поведение составляющих чугуна при продувке - student2.ru

Рис. 7.9. Изменение состава металла (а) и шлака (б) по ходу продувки в кислородном конвертере

Марганец восстанавливается из шлака; в конце продувки, когда вследствие усиливающегося окисления железа содержание оксидов железа в шлаке возрастает Конечное содержание обычно находится в пределах от 0,2—0,3 до 0,03—0,05 %, нижний предел— при переработке маломарганцовистых чугунов.

Окисление углеродав кислородном конвертере происходит преимущественно до СО; до СО2 окисляется около 10% углерода, содержащегося в чугуне. В начале продувки скорость окисления углерода невелика (0,1—0,15 %/мин), поскольку много кислорода расходуется на окисление кремния и марганца, имеющих высокое химическое сродство к кислороду при низких температурах. В дальнейшем, вследствие повышения сродства углерода к кислороду при росте температуры и уменьшения расхода кислорода на окисление марганца и кремния, скорость окисления углерода возрастает и затем остается в течение длительного времени почти постоянной. В этот период весь вдуваемый кислород идет на окисление углерода, и достигаемая скорость (до 0,5 %/мин) обезуглероживания определяется интенсивностью подачи кислорода. В конце продувки скорость обезуглероживания вновь снижается потому, что в металле остается мало углерода.

Роль реакции обезуглероживания велика: окисление углерода дает большую часть тепла для нагрева ванны; длительность окисления углерода определяет длительность продувки; выделяющиеся пузыри СО обеспечивают перемешивание ванны, благодаря чему выравниваются состав и температура. Ускоряется нагрев металла; вследствие перемешивания металла и шлака ускоряются дефосфорация и десульфурация; с пузырями СО удаляются растворенные в металле вредные газы — водород и азот; пузыри СО вспенивают ванну, благодаря чему могут возникать выбросы.

Дефосфорация.Основными источниками попадания фосфора в конвертер являются жидкий чугун, а также стальной лом. Для успешного протекания экзотермической реакции удаления из металла в шлак фосфора:

Поведение составляющих чугуна при продувке - student2.ru

необходимы повышенные основность и окисленность шлака и невысокая температура. В конвертере с верхней продувкой создаются благоприятные условия для удаления фосфора: быстрое формирование основных шлаков с высокой окислен-ностью (высоким содержанием оксидов железа) и неплохое перемешивание металла со шлаком. Поскольку реакция удаления фосфора сопровождается выделением тепла, дефосфорация наиболее интенсивно протекает в первой половине продувки при сравнительно низкой температуре.

Конечное содержание фосфора в металле зависит от количества шлака и полноты протекания реакции дефосфорации, которую обычно характеризуют величиной коэффициента распределения фосфора между шлаком и металлом (Р2О5)/[Р]. Эта величина в условиях кислородно-конвертерного процесса изменяется от 40 до 100—120 и в этих пределах обычно тем выше, чем выше основность и окисленность шлака и чем ниже температура металла в конце продувки. Кроме того, повышению значения (Р2О5)/[Р] способствует улучшение перемешивания металла со шлаком, что достигается при снижении вязкости шлака и при более раннем шлакообразовании, поскольку в этом случае увеличивается продолжительность контакта металла со шлаком. Целесообразно также увеличение количества шлака, поскольку при одной и той же достигнутой величине коэффициента распределения количество фосфора, перешедшего в шлак, будет тем больше, чем больше масса шлака.

Обычно при содержании фосфора в чугуне менее 0,15— 0,20 % металл в конце продувки содержит 0,02—0,04 % фосфора; степень дефосфорации достигает 75—90 %.

Десульфурация. Сера поступает в кислородный конвертер с жидким чугуном, стальным ломом, шлаком из заливочного ковша с известью. Чугун может содержать до 0,035—05 % S. Шлак в заливочном ковше до 2 % S, а после внепечной десульфурации до 4 % S.

В процессе продувки немного серы (5—10 %) окисляется кислородом дутья и удаляется в виде SO2 c отходящими газами. Остальная сера распределяется между шлаком и металлом. Для успешного удаления серы необходимы высокая основность шлака и низкое содержание в нем окислов железа. Конвертерной же шлак содержит значительное количество FеО (8—20 % и более), поэтому десульфурация получает ограниченное развитие. Степень десульфурации обычно не превышает 30 %, а коэффициент распределения серы между шлаком и металлом невелик (от 2 до 6).

В реальных условиях конвертерной плавки основные способы улучшения десульфурации — повышение основности шлака и его количество, а также обеспечение более раннего шлакообразования. Чаще всего проводят десульфурацию стали на установках внепечной обработки стали путем вдувания порошкообразных десульфураторов в ковш после выпуска в него металла из конвертера.

Основные источники шлакообразования - это загружаемая в конвертер известь (СаО) и продукты окисления составляющих чугуна ( Поведение составляющих чугуна при продувке - student2.ru , МпО, FеО, Fе2О3, Р2О5). Это также оксиды растворяющейся футеровки (СаО, МgО); некоторое количество миксерного шлака ( Поведение составляющих чугуна при продувке - student2.ru , СаО, МпО, МgО, FеО, А12О3, S); оксиды железа из ржавчины стального лома и составляю­щие флюсов. Обычно флюсом служит плавиковый шпат, вносящий СаF2 и немного Поведение составляющих чугуна при продувке - student2.ru ; иногда применяют боксит (А12О3, Поведение составляющих чугуна при продувке - student2.ru , Fе2О3) железную руду или агломерат либо окатыши, вносящие оксиды железа и немного Поведение составляющих чугуна при продувке - student2.ru и А12О3; флюоритовые руды (СаF2); различные отходы производств.

Формирование основного шлака сводится к растворению загружаемой в конвертер кусковой извести в образующейся с первых секунд продувки жидкой шлаковой фазе — продуктах окисления составляющих чугуна ( Поведение составляющих чугуна при продувке - student2.ru , МпО, FеО). Известь тугоплавка (температура плавления СаО составляет 2570 °С), поэтому для ее растворения необходимо взаимодействие СаО с окислами окружающей шлаковой фазы с образованием легкоплавких химических соединений, которые расплавлялись бы при температурах конвертерной ванны.

Практика показала, что без принятия специальных мер растворение извести происходит медленно. Это объясняется тем, что в образующейся в первые секунды продувки шлаковой фазе содержится большое количество Поведение составляющих чугуна при продувке - student2.ru и, реагируя с этим оксидом, куски извести покрываются тугоплавкой оболочкой из двухкалышевого силиката 2СаО • Поведение составляющих чугуна при продувке - student2.ru (темпера­тура плавления 2130 °С), препятствующей дальнейшему растворению. Поэтому необходимо добавлять компоненты, понижающие температуру плавления этого силиката, а также самой извести.

Наиболее эффективны в этом отношении СаF2 и оксиды железа, в несколько меньшей степени МпО. С учетом изложеного в конвертер в начале продувки обычно присаживают плавиковый шпат (СаF2), а обогащение шлака окислами железа достигают, начиная продувку при повышенном положении фурмы, и иногда за счет присадок железной руды, агломера­та, окатышей, боксита.

Общий расход извести составляет 6-8% от массы плавки; его определяют расчетом так, чтобы обеспечивалась требуемая основность шлака (СаО/ Поведение составляющих чугуна при продувке - student2.ru = 2,7-3,6). Расход плавикового шпата составляет 0,15—0,3 % и иногда более.

В результате растворения извести содержание СаО в шлаке возрастает, а содержание Поведение составляющих чугуна при продувке - student2.ru , МпО и FеО снижается. Заметно уменьшается содержание FеО в период наиболее интенсивного окисления углерода (середина продувки), когда сильное развитие получает реакция окисления углерода за счет окислов железа шлака. В конце продувки, когда углерода в металле мало, начинает окисляться железо и содержание FеО в шлаках возрастает, причем тем значительнее, чем до более низкого содержания углерода в металле ведут продувку.

Состав конечного шлака следующий: 43-52 % СаО; 14-22 % Поведение составляющих чугуна при продувке - student2.ru ; 8-25% FеО; 2-6% Fе2О3; 3-12% МпО; 3-7% А12О3; 1,5-4% МgО; 0,5-4,0% Р2O5; < 3 % СаF2; < 1 % СаS. Соотношение между содержанием СаО и Поведение составляющих чугуна при продувке - student2.ru определяется основностью шлака, которой задаются и которую регулируют, изменяя расход извести. Количество оксидов железа, как отмечалось, будет тем выше, чем ниже содержание углерода в металле в конце продувки.

Раскисление и легирование

Раскисление стали. Раскисление кислородно-конвертерной стали производят осаждающим методом в ковше во время выпуска. В конвертер раскислители не вводят во избежание их большого угара.

Спокойные стали обычно раскисляют марганцем, кремнием и алюминием, на отдельных марках стали дополнительно применяют титан, кальций и другие сильные раскислители. Кипящую сталь раскисляют одним марганцем.

Последовательность ввода в ковш широко применяемых сплавов раскислителей следующая: вначале вводят ферромарганец или силикомарганец, затем ферросилиций и в последнюю очередь алюминий. Кипящую сталь раскисляют одним ферромарганцем. Подачу раскислителей начинают после наполнения ковша жидким металлом примерно на 1/4—1/3, а заканчивают, когда заполнен металлом на 2/3, что позволяет избежать попадания раскислителей в шлак и их повышенного угара. Расход алюминия на раскисление в зависимости от содержания углерода в выплавляемой стали составляет 0,15—1,20 кг на 1т стали, увеличиваясь при снижении содержания углерода; большая часть вводимого алюминия (60—90 %) угорает.

Легирование стали. Выплавка легированных сталей в кислородных конвертерах сопряжена со значительными трудностями, поскольку большинство легирующих элементов нельзя вводить в конвертер из-за возможности их полного или частичного окисления, а в случае ввода в ковш количество добавок ограничено, так как возможно чрезмерное охлаждение жидкой стали и неравномерное распределение вводимых элементов в объеме жидкого металла

Легирование твердыми ферросплавами. Это наиболее широко применяемый и простой метод. В цехах, где нет установок внепечной обработки стали, все легирующие вводят в ковш во время выпуска металла. При этом ферросплавы с элементами, обладающими высоким химическим сродством к кислороду (Ті, Zr, Са, Се и т.д.), а также с ванадием и ниобием вводят в ковш после дачи всех раскислителей. Часто применяемый для легирования хром вводят в виде феррохрома или в виде экзотермического феррохрома, растворение которого в жидком металле идет без затраты тепла. Из-за возможного охлаждения жидкой стали и неравномер­ного при этом распределения элементов количество вводимых добавок ограничено и этим методом получают низколегированные стали с общим содержанием легирующих элементов не выше 2-3%.

Легирование жидкими ферросплавами. Способ заключается в том, что при выпуске стали из конвертера в ковш заливают легирующие добавки, предварительно расплавленные в индукционной или дуговой электропечи. Метод позволяет вводить в сталь большое количество легирующих, но обладает существенным недостатком — необходимо иметь в цехе дополнительный плавильный агрегат, что усложняет организацию работ в цехе.

Легирование экзотермическими ферросплавами. Ферросплавы в виде брикетов вводят в ковш перед выпуском в него стали. В состав брикетов, помимо измельченных легирующих (феррохрома, ферромарганца и др.), входят окислитель (например, натриевая селитра), восстановитель (например, алюминиевый порошок) и связующие (каменноугольный пек и т.д.). При растворении брикетов в стали алюминий окисляется за счет кислорода, содержащегося в натриевой селитре; выделяющееся тепло расходуется на расплавление легирующих. Подобным методом с успехом вводят в сталь до 4% легирующих элементов. Способ не нашел широкого применения из-за трудностей в организации производства брикетов.

Наши рекомендации