Ручная дуговая сварка(схема). Классификация электродов.
При ручной дуговой сварке покрытыми металлическими электродами, сварочная дуга горит с электрода на изделие, оплавляя кромки свариваемого изделия и расплавляя металл электродного стержня и покрытие электрода (рисунок 1). Кристаллизация основного металла и металла электродного стержня образует сварной шов. Электрод состоит из электродного стержня и электродного покрытия. Электродный стержень – сварочная проволока; электродное покрытие – многокомпонентная смесь металлов и их оксидов
Большоеразнообразие электродов, а также принципов их классификации затрудняет разработку единой общепринятой системы классификации электродов. Марки элект-родов стандартами не регламентируются. В соответствии с ГОСТ 9466-75 электроды покрытые металлические для ручной дуго- вой сварки сталей и наплавки классифи -цируются по назначению, механическим свойствам и химическому составу наплавленного металла, видам и толщине покрытий, а также некоторым сварочно-технологическим характеристикам
52,53Полуавтоматической сварке механизирована подача электрода в зону дуги, а перемещение электрода вдоль свариваемых кромок производится сварщиком вручную.При сварке плавящимся электродом в защитном газе (рисунок 5) в зону дуги, горящей между плавящимся электродом (сварочной проволокой) и изделием через сопло подаётся защитный газ, защищающий металл сварочной ванны, капли электродного металла и закристаллизовавшийся металл от воздействия активных газов атмосферы. Теплотой дуги расплавляются кромки свариваемого изделия и электродная (сварочная) проволока. Расплавленный металл сварочной ванны, кристаллизуясь, образует сварной шов.
Рисунок 5. Схема сварки в защитных газах
При сварке в защитных газах плавящимся электродом в качестве электродного металла применяют сварочную проволоку близкую по химическому составу к основному металлу. Выбор защитного газа определяется его инертностью к свариваемому металлу, либо активностью, способствующей рафинации металла сварочной ванны. Для сварки цветных металлов и сплавов на их основе применяют инертные одноатомные газы (аргон, гелий и их смеси). Для сварки меди и кобальта можно применить азот. Для сварки сталей различных классов применяют углекислый газ, но так как углекислый газ участвует в металлургических процессах, способствуя угару легирующих компонентов и компонентов - раскислителей (кремния, марганца), то сварочную проволоку следует выбрать с повышенным их содержанием. В ряде случаев целесообразно применять смесь инертных и активных газов, чтобы повысить устойчивость дуги, улучшить формирование шва, воздействовать на его геометрические параметры, уменьшить разбрызгивание.
Сварку в защитных газах плавящимся электродом ведут на постоянном токе обратной полярности, т.к. на переменном токе из-за сильного охлаждения столба дуги защитным газом, дуга может прерываться. Скорость подачи сварочной проволоки определяет силу сварочного тока.
Для сварки в защитных газах плавящимся электродом характерно высокий процент потерь электродного металла вследствие угара и разбрызгивания.
Разбрызгиванию способствует вид переноса электродного металла, зависящий от параметров режима сварки (рисунок 2):
крупнокапельный;
смешанный;
мелкокапельный.
При крупнокапельном переносе электродного металла образуется малое количество брызг, вследствие нечастых, но продолжительных коротких замыканий дугового промежутка. Высокое объёмное теплосодержание крупных капель приводит к надёжному соединению с поверхностью свариваемого металла.
При смешанном переносе электродного металла наблюдается максимальное образование брызг (потери на разбрызгивание могут достигать 20 30%) - такое явление также связано с короткими замыканиями дугового промежутка расплавленным электродным металлом и образованием в межэлектродном промежутке капель с разной массой и различной скоростью перемещения. В диапазоне сварочных токов, при котором возникает смешанный перенос электродного металла сварку не выполняют.
Рисунок 2. Виды переноса электродного металла
Наименьшие потери на разбрызгивание наблюдаются при мелкокапельном переносе электродного металла. В определённом диапазоне сварочных токов (плотностей сварочных токов) перенос электродного металла приобретает мелкокапельный (струйный характер). Образовавшаяся на торце электрода, при таком процессе, капля не растягивается и не увеличивается до соприкосновения с основным металлом, что не приводит к коротким замыканиям, взрывам и образованиям брызг.
54. При этом способе сварки электрическая дуга горит под зернистым сыпучим материалом, называемым сварочным флюсом (рисунок 1).
Рисунок 1. Схема сварки под флюсом
Под действием тепла дуги расплавляются электродная проволока и основной металл, а также часть флюса. В зоне сварки образуется полость, заполненная парами металла, флюса и газами. Газовая полость ограничена в верхней части оболочкой расплавленного флюса. Расплавленный флюс, окружая газовую полость, защищает дугу и расплавленный металл в зоне сварки от вредного воздействия окружающей среды, осуществляет металлургическую обработку металла в сварочной ванне. По мере удаления сварочной дуги расплавленный флюс, прореагировавший с расплавленным металлом, затвердевает, образуя на шве шлаковую корку. После прекращения процесса сварки и охлаждения металла шлаковая корка легко отделяется от металла шва. Не израсходованная часть флюса специальным пневматическим устройством собирается во флюсоаппарат и используется в дальнейшем при сварке.
Достоинства способа:
Повышенная производительность;
Минимальные потери электродного металла (не более 2%);
Отсутствие брызг;
Максимально надёжная защита зоны сварки;
Минимальная чувствительность к образованию оксидов;
Мелкочешуйчатая поверхность металла шва в связи с высокой стабильностью процесса горения дуги;
Не требуется защитных приспособлений от светового излучения, поскольку дуга горит под слоем флюса;
Низкая скорость охлаждения металла обеспечивает высокие показатели механических свойств металла шва;
Малые затраты на подготовку кадров;
Отсутствует влияния субъективного фактора.
Недостатки способа:
Трудозатраты с производством, хранением и подготовкой сварочных флюсов;
Трудности корректировки положения дуги относительно кромок свариваемого изделия;
Неблагоприятное воздействие на оператора;
Нет возможности выполнять сварку во всех пространственных положениях без специального оборудования.
Области применения:
Сварка в цеховых и монтажных условиях
Сварка металлов от 1,5 до 150 мм и более;
Сварка всех металлов и сплавов, разнородных металлов.
Контактная сварка
Контактная сварка (электрическая контактная сварка) – это процесс образования неразъемных соединений конструкционных металлов путем их кратковременного нагрева электрическим током и пластического деформирования усилием сжатия.
Контактная сварка относится к комбинированным (термомеханическим) способам сварки.
Почти на всех языках такой способ называется электрической сваркой сопротивлением, причем имеется в виду омическое сопротивление проводника прохождению электрического тока, играющее большую роль в этом процессе. В русском языке более употребительно название «электрическая контактная сварка», подчеркивающее главенствующую роль в данном процессе электрического контакта между свариваемыми деталями.
Все способы контактной сварки классифицируют по ряду признаков:
по форме сварного соединения – точечная, рельефная, шовная, стыковая;
по конструкции соединения (нахлесточное или стыковое);
по состоянию металла в зоне сварки – с расплавлением металла и без расплавления;
по способу подвода тока – одно- и двусторонняя;
по роду сварочного тока и форме импульса тока (переменный – промышленной, повышенной и пониженной частоты, постоянный, униполярный – ток одной полярности с переменной силой в течение импульса);
по числу одновременно выполняемых соединений – одноточечная, двухточечная, многоточечная, сварка одним или несколькими швами и т.д.;
по наличию дополнительных связующих компонентов (клея, грунта, припоя и др.);
по характеру перемещения роликов при шовной сварке – непрерывная (с постоянным вращением роликов) или шаговая (с остановкой роликов на время сварки).
Точечная сварка – способ контактной сварки, при котором соединение деталей осуществляется на участках, ограниченных площадью торцов электродов, подводящих ток и передающих усилие сжатия.
Рис.1- Схема контактной
точечной сварки
Шовная сварка – способ контактной сварки, при котором соединение деталей выполняется внахлестку в виде непрерывного или прерывистого шва вращающимися дисковыми электродами (роликами), к которым подведен ток и приложено усилие сжатия.
Рис.2-Схема контактной
шовной сварки
Рельефная сварка – способ контактной сварки, при котором соединение деталей происходит на отдельных участках по заранее подготовленным или естественным выступам.
Рис.3-Схема контактной рельефной
Сварки
Стыковая сварка – способ контактной сварки, при котором соединение свариваемых деталей происходит по поверхности стыкуемых торцов.
Рис.4- Схема контактной
стыковой сварки
Область применения контактной сварки весьма обширна – от крупногабаритных строительных конструкций и космических аппаратов до миниатюрных полупроводниковых устройств и микросхем.
Контактной сваркой можно соединять практически все известные конструкционные материалы – низкоуглеродистые и легированные стали, жаропрочные и коррозионно-стойкие сплавы, сплавы на основе алюминия, магния и титана и др.
Точечная сварка широко используется в автомобиле-, вагоно- и авиастроении, строительстве, радиоэлектронике и т.д. Диапазон свариваемых толщин – от нескольких микрометров до 30 мм.
Шовная сварка применяется при изготовлении различных герметичных емкостей, например, топливных баков автомобилей и летательных аппаратов, емкостей и камер бытовой техники, плоских отопительных радиаторов и т.п. Шовная сварка обеспечивает получение прочноплотных швов при производстве чувствительных элементов в приборостроении
Рельефная сварка используется для крепления кронштейнов к листовым деталям, например, скобы к капоту автомобиля, петли для навески дверей к кабине, для соединения крепежных деталей – болтов, гаек и шпилек, крепления проволоки к тонким деталям в радиоэлектронике и др.