Методы увеличения продуктивности скважин

Методы повышения продуктивности скважин.

Содержание:

Введение……………………………………………………………………...……2

1. Методы увеличения продуктивности скважин…………………….…………3

1.1 Химические методы…………………………………..………..…………...4

1.2 Механические методы…………………………...………………………….5

1.3 Физические методы……………………………...…………………………..7

2. Гидроразрыв пласта……………………………………………………...……16

2.1 Технология проведения гидроразрыва пласта (ГРП)…………..………..18

3 Вытеснение нефти водой……………………………………………………..21

3.1 Химические реагенты улучшающие нефтевытеснение…………….……24

4.Метод воздействия импульсами электрического тока ....………………….26

Заключение…………………………………………………………...…………..29

Список литературы………………………………………………………………30

Введение

Увеличение степени извлечения нефти из недр в настоящее и ближайшее десятилетия является одной из главных проблем энергообеспечения. Эффективность известных методов извлечения нефти обеспечивает конечный коэффициент нефтеотдачи в пределах 0,25 -0,45, что явно недостаточно для увеличения ресурсов нефти. Остаточные запасы или не извлекаемые существующими промышленно освоенными методами разработки достигают примерно 55 - 75 % от первоначальных геологических запасов нефти в недрах и представляют собой большой резерв увеличения извлекаемых ресурсов с применением методов повышения продуктивности скважин. В связи с этим, повышение степени извлечения нефти из недр разрабатываемых месторождений за счет прогрессивных методов воздействия на пласты является важной народнохозяйственной задачей.

Ввиду недостаточности нефтеотмывающих свойств закачиваемой воды, как основного средства нефтевытеснения, в 1960 -1980 гг. большое внимание в нашей стране и за рубежом было уделено повышению эффективности существующих и созданию новых методов повышения нефтеотдачи, основывающихся главным образом на увеличении коэффициента вытеснения. В этом направлении были достигнуты определенные успехи, на что указывает создание в этот период множества физико-химических методов, основанных на применении поверхностно-активных веществ, кислот, щелочей и растворителей.

Методы увеличения продуктивности скважин

Ввиду недостаточности нефтеотмывающих свойств закачиваемой воды, как основного средства нефтевытеснения, в 1960 -1980 гг. большое внимание в нашей стране и за рубежом было уделено повышению эффективности существующих и созданию новых методов повышения нефтеотдачи, основывающихся главным образом на увеличении коэффициента вытеснения. В этом направлении были достигнуты определенные успехи, на что указывает создание в этот период множества физико-химических методов, основанных на применении ПАВ, кислот, щелочей и растворителей.

При этом коэффициент охвата пластов воздействием остается низким, что во многом определяет недостаточно высокий коэффициент нефтеотдачи пластов.

Охват объема пласта воздействием во многом зависит от особенностей геологического строения залежей, неоднородности коллекторских свойств пород пласта, физико-химических свойств насыщающих жидкостей и эффективности системы разработки нефтяных месторождений. Из них наиболее существенное влияние оказывает проницаемостная неоднородность. Основные методы воздействия на продуктивные пласты, направленные на повышение текущей и конечной нефтеотдачи, базируются на искусственном заводнении коллекторов и осуществляются путем реализации различных способов площадного, заколонного, внутриконтурного и других систем заводнения. Наибольшему увеличению охвата пластов воздействием способствуют: избирательное заводнение, позволяющее рационально использовать энергию закачиваемой воды; очаговое, циклическое заводнение; применение повышенных давлений на линии нагнетания, а также выбор оптимальной сетки скважин.

Дополнительный приток нефти в скважины, а следовательно, и дополнительный дебит обеспечивают применение методов увеличения проницаемости призабойной зоны пласта. На окончательной стадии бурения скважины глинистый раствор может проникать в поры и капилляры призабойной зоны, снижая ее проницаемость.

Снижение проницаемости этой зоны, загрязнение ее возможно и в процессе эксплуатации скважины. По мере разработки залежи приток нефти и газа в скважину постепенно уменьшается. Причина этого заключается в «засорении» призабойной зоны — заполнении порового пространства коллекторов твердыми и разбухшими частицами породы, тяжелыми смолистыми остатками нефти, солями, выпадающими из пластовой воды, отложениями парафина, гидратами (в газовых пластах) и т.д.

В процессе разработки нефтяных и газовых месторождений широко применяются методы повышения проницаемости пласта и призабойной зоны. Для увеличения проницаемости пласта и призабойной зоны применяют механические, химические и физические методы.

Химические методы

К химическим методам воздействия на призабойную зону относятся обработки кислотами, ПАВ, химреагентами и органическими растворителями.

Кислотная обработка скважин связана с подачей на забой скважины под определенным давлением растворов кислот. Растворы кислот под давлением проникают в имеющиеся в пласте мелкие поры и трещины и расширяют их. Одновременно с этим образуются новые каналы, по которым нефть может проникать к забою скважины. Для кислотной обработки применяют в основном водные растворы соляной и плавиковой (фтористоводородной) кислоты. Концентрация кислоты в растворе обычно принимается равной 10 ¸ 15 %, что связано с опасностью коррозионного разрушения труб и оборудования. Однако в связи с широким использованием высокоэффективных ингибиторов коррозии и снижением опасности коррозии концентрацию кислоты в растворе увеличивают до 25 ¸ 28 %, что позволяет повысить эффективность кислотной обработки. Длительность кислотной обработки скважин зависит от многих факторов — температуры на забое скважины, генезиса пород продуктивного пласта, их химического состава, концентрации раствора, давления закачки. Технологический процесс кислотной обработки скважин включает операции заполнения скважины кислотным раствором, продавливание кислотного раствора в пласт при герметизации устья скважин закрытием задвижки. После окончания процесса продавливания скважину оставляют на некоторое время под давлением для реагирования кислоты с породами продуктивного пласта. Длительность кислотной обработки после продавливания составляет 12 ¸ 16 ч на месторождениях с температурой на забое не более 40 °С и 2 ¸ 3 ч при забойных температурах 100 ¸ 150 °С.

Механические методы

К механическим методам относятся гидравлический разрыв пласта (ГРП), гидропескоструйная перфорация (ГПП) и торпедирование.

Гидроразрыв пласта производится путем закачки в него под давлением до 60 МПа нефти, пресной или минерализованной воды, нефтепродуктов (мазут, керосин, дизельное топливо) и других жидкостей в результате чего в пласте образуются трещины. В образовавшиеся трещины нагнетают песок, стеклянные и пластмассовые шарики, чтобы после снятия давления трещина не сомкнулась. Трещины, образовавшиеся в пласте, являются проводниками нефти и газа, связывающими скважину с удаленными от забоя продуктивными зонами пласта. Протяженность трещин может достигать нескольких десятков метров, ширина их 1 ÷ 4 мм.

Применение гидроразрыва дает наибольший эффект при низкой проницаемости пласта и призабойной зоны, и позволяет увеличить дебит нефтяных скважин в 2 ... 3 раза.

Гидропескоструйная перфорация — это процесс создания отверстий в стенках эксплуатационной колонны, цементном камне и горной породе для сообщения продуктивного пласта со стволом скважины за счет энергии песчано-жидкостной струи, истекающей из насадок специального устройства (перфоратора). Рабочая жидкость с содержанием песка 50 ... 200 г/л закачивается в скважину с расходом 3 ... 4 л/с. На выходе же из насадок перфоратора ее скорость составляет 200 ... 260 м/с, а перепад давления — 18... 22 МПа. При данных условиях скорость перфорации колонны и породы составляет в сред­нем от 0.6 до 0.9 мм/с.

В результате гидропескоструйной перфорации сообщение продуктивного пласта со скважиной происходит через щели в колонне и цементном камне по всей его толщине.

Торпедированием называется воздействие на призабойную зону пласта взрывом. Для этого в скважине напротив продуктивного пласта помещают соответствующий заряд взрывчатого вещества (тротил, гексоген, нитроглицерин, динамит) и подрывают его. При взрыве торпеды образуется мощная ударная волна, которая проходит через скважинную жидкость, достигает стенок эксплуатационной колонны, наносит сильный удар и вызывает растрескивание отложений (солей, парафина и др.). В дальнейшем пульсация газового пузыря, образовавшегося из продуктов взрыва, обеспечивает вынос разрушенного осадка из каналов.

Физические методы

К физическим методам воздействия на призабойную зону относятся тепловые обработки и вибровоздействия.

Целью тепловых обработок является удаление парафина и асфальто-смолистых веществ. Для этого применяют горячую нефть, пар, электронагреватели, термоакустическое воздействие, а также высокочастотную электромагнитоакустическую обработку.

При вибровоздействии призабойная зона пласта подвергается обработке пульсирующим давлением. Благодаря наличию жидкости в порах породы обрабатываемого пласта, по нему распространяются как искусственно создаваемые колебания, так и отраженные волны. Путем подбора частоты колебания давления можно добиться резонанса обоих видов волн, в результате чего возникнут нарушения в пористой среде, т.е. увеличится проницаемость пласта.

Методы повышения пластового давления и увеличения проницаемости пласта позволяют, главным образом, сокращать сроки разработки залежей за счет более интенсивных темпов отбора нефти и газа. Однако необходимо добиваться и наиболее полного извлечения нефти и газа из недр. Это достигается применением методов повышения нефте- и газоотдачи пластов.

Для повышения нефтеотдачи применяют следующие способы:

¨ закачка в пласт воды, обработанной ПАВ;

¨ нагнетания в пласт теплоносителя;

¨ внутрипластовое горение;

¨ вытеснение нефти растворами полимеров;

¨ закачка в пласт углекислоты.

При закачке в нефтяной пласт воды, обработанной ПАВ, снижается поверхностное натяжение на границе нефть-вода, что способствует дроблению глобул нефти и образованию маловязкой эмульсии типа «нефть в воде», для перемещения которой необходимы меньшие перепады давления. Одновременно резко снижается и поверхностное натяжение на границе нефти с породой, благодаря чему она более полно вытесняется из пор и смывается с поверхности породы.

При вытеснении нефти водой нередки случаи, когда вследствие различия вязкостей жидкостей или разной проницаемости отдельных участков пласта имеет место опережающее продвижение вытесняющего агента по локальным зонам пласта. Это приводит к недостаточно полному вытеснению нефти. Для выравнивания фронта продвижение воды в пласт закачивают водо-растворимые полимеры.

Для загущения воды применяют различные водорастворимые полимеры, из которых наиболее широкое применение нашли полиакриламиды (ПАА). Они хорошо растворяются в воде и уже при концентрациях 0.01 ... 0.05 % придают ей вязкоупругие свойства, создает условия для более равномерного продвижения водонефтяного контакта и повышения конечной нефтеотдачи пласта.

Роль раствора полимеров могут выполнять также пены, приготовленные на аэрированной воде с добавкой 0.2 ... 1 % пенообразующих веществ. Вязкость пены в 5 ... 10 раз больше вязкости воды.

Нагнетание в пласт теплоносителя: Сущность тепловых методов состоит в том что наряду с гидродинамическим вытеснением повышается температура в залежи, способствуя существенному уменьшению вязкости нефти, увеличению ее подвижности, испарению легких фракций и др. Это позволяет применять данные методы для залежей высоковязкой смолистой нефти вплоть до битумов, залежей нефтей, обладающих неньютоновскими свойствами[1], а также залежей, пластовая температура которых равна или близка к температуре насыщения нефти парафином.

Аномалия вязкости в основном обусловлена образованием в жидкости более или менее устойчивой пространственной структуры. В нефтях пространственную структуру образовывают асфальтены, смолы и парафины. При снижении температуры ниже температуры насыщения растворенные парафины кристаллизуются и их кристаллы придают нефти аномальные (структурно-механические) свойства.

Существует большое количество различных видов тепловых методов, но в основе практически любого из них лежит одна из двух технологий воздействия на пласт: ВГВ (воздействие горячей водой); ПТВ (паротепловое воздействие). Так как в рамках данной статьи представляет интерес именно паротепловой метод, далее будем рассматривать именно его.

Первые работы по закачке пара в пласт относятся к 1932 г. [3]. Лучшими теплоносителями и вытеснителями оказались горячая вода и водяной пар при высоком давлении. При кипении из воды выносятся пузырьки пара вместе с мельчайшими капельками влаги, смесь которых называют насыщенным паром с различной степенью сухости xп (отношение массы сухой паровой фазы к массе смеси). При 1 > xп > 0 имеем влажный насыщенный пар, а при xп = 1 — сухой насыщенный пар (неустойчивое мгновенное состояние).

Перегретым называют пар, который при одинаковом давлении с насыщенным имеет температуру больше температуры кипения tкип. При охлаждении перегретого пара при постоянном давлении выделяется теплота перегрева, затем теплота парообразования (конденсации) и дальше частично теплота жидкости, т. е. получаются насыщенный пар и за ним горячая вода.

Критическое состояние воды (критическая точка), которое характеризуется исчезновением различия между жидкостью и паром, наступает при значениях давления МПа и температуры °С, при этом удельный объем м3/кг и плотность м3/кг [3].

Вода и нефть практически взаимонерастворимы в атмосферных условиях. Неограниченная растворимость нефтей в жидкой воде, экспериментально установленная в 1960 г., достигается при температурах 320–340 °С и давлениях 16–22 МПа. Причем вода в отличие от других растворителей при снижении температуры водонефтяного раствора до атмосферной полностью выделяет всю растворенную в ней нефть. Критическая температура растворения снижается в пористой среде на 10–20 °С, а при добавке к воде углекислого газа в объемном соотношении 1:5 (в атмосферных условиях) — до 250 °С. Сопоставительными лабораторными опытами вытеснения нефти водой с поинтервальным ступенчатым повышением температуры закачиваемой воды установлено, что суммарный коэффициент вытеснения повышается до 0,67 при температуре 250–300 °С и до 0,97 при температуре 300–310 °С и давлении 18–20 МПа. Полное вытеснение убеждает, что происходит взаимное смешение воды и нефти.

Насыщенный водяной пар, как терморастворитель нефти действует во всей области его существования в интервале температур 100–370 °С и давлений от атмосферного до 22 МПа. Однако коэффициент охвата пласта для горячей воды выше, чем для пара. Пар как маловязкий рабочий агент обычно движется у кровли пласта. Охват паром по толщине не превышает 0,4, по площади составляет 0,5–0,9. Средний коэффициент нефтеотдачи при этом достигает 0,3–0,35.

Закачка в пласт теплоносителя и терморастворителя может осуществляться с нагревом его на поверхности или на забое скважины; на поверхности с дополнительным подогревом на забое скважины. Максимальная величина охлаждения приближается к значению , где глубина точки инверсии температурной кривой [3]. Увеличить можно уменьшением или повышением т. е. увеличением расхода q и продолжительности закачки t. На заданной глубине возрастает, через 50–100 суток практически стабилизируется и становится меньше примерно на 6, 10 и 13 % при глубине залегания соответственно 500, 1000 и 1500 м. Приблизительно такие же значения принимает и величина теплопотерь. При закачке горячей воды ее приходится нагревать на поверхности на 30–50 °С (в зависимости от глубины) выше проектной забойной температуры. Температура влажного пара возрастает с глубиной и становится выше на 30–40 °С. Так как температура влажного пара зависит только от давления, то рост давления с глубиной за счет массы теплоносителя с учетом гидравлических потерь приводит к увеличению температуры. При этом все теплопотери в стволе компенсируются постепенной конденсацией пара (теплотой конденсации), т. е. возрастанием его влажности.

С увеличением глубины пар может превратиться в горячую воду. При движении теплоносителя по пласту также возможны потери теплоты через кровлю и подошву пласта. Для уменьшения всех теплопотерь выбирают нефтяные пласты с достаточно большой толщиной (более 6 м), применяют площадные сетки скважин с расстоянием до 100–200 м между нагнетательными и добывающими скважинами, перфорируют скважины в средней части пласта, обеспечивают максимально возможный темп нагнетания теплоносителя (пара 100–250 т/сут и более), теплоизолируют трубы, теплогенератор максимально приближают к скважинам и др.

Теплопотери в стволе скважины ограничивают область применения методов закачки пара и горячей воды на глубины залегания пласта до 700–1500 м, а при закачке воды в качестве терморастворителя глубина должна быть больше 1700–1800 м из-за необходимости создания высокого давления. Теплоноситель закачивают в виде нагретой оторочки размером более 0,3–0,4 объема обрабатываемого пласта, а затем форсированно продвигают ее по пласту холодной водой, которая нагревается теплотой, аккумулированной в пласте за фронтом вытеснения.[5,c.17]

Метод внутрипластового горения: Закачка теплоносителей сопряжена с большими потерями тепла в наземных коммуникациях. Так, в поверхностных паропроводных теряется 0,35…3,5 млн.кДж/сут на каждые 100 м трубопровода, а в скважине – 1,7 млн.кДж/сут на каждые 100 м длины НКТ.Поэтому более эффективным представляется источник тепла, расположенный непосредственно в пласте. Таким источником является очаг внутрипластового горения.Метод заключается в следующем. На забое нагнетательной скважины с помощью горелок различной конструкции создается высокая температура, вызывающая загорание нефти в пласте. Для поддержания горения в пласт через эту же скважину подают окислитель-воздух или кислородосодержащую смесь в объемах, обеспечивающих горение. Горение нефти вызывает повышение температуры до 400оС и улучшает процесс вытеснения нефти.Факт горения представлен несколькими зонами, т.е. при внутрипластовом горении (ВГ) действуют одновременно все известные методы воздействия на пласт: горячая вода, пар, растворитель, газы из легких углеводородов.Физический процесс горения представляется таким образом. После поджога в пласте происходит процесс термической перегонки нефти, продукты которой – коксоподобные остатки нефти – являются топливом, поддерживающим очаг горения. Зона горения перемещается от нагнетательной скважины вглубь в радиальном направлении. Образующийся тепловой фронт с температурой 450…500оС вызывает следующие процессы в пласте. 1. Переход в газовую фазу легких компонентов нефти. 2. Расщепление (крекинг) некоторых углеводородов. 3. Горение коксоподобного остатка. 4. Плавление парафина и асфальтенов в порах породы. 5. Переход в паровую фазу платсовой воды, находящейся перед фронтом. 6. Уменьшение вязкости нефти перед фронтом и смешивание выделяющихся легких фракций нефти и газов с основной массой. 7. Конденсация продуктов перегонки нефти и образование подвижной зоны повышенной нефтенасыщенности перед фронтом горения. 8. Образование сухой выгоревшей массы пористой породы за фронтом горения.В пласте образуются несколько зон: I – выгоревшая зона со следами несгоревшей нефти или кокса; II – зона горения, в которой максимальнаятемпература достигает 300…500оС; III – зона испарения, в которой происходит разгонка нефти на фракции и крекинг нефти, пластовая и связанные воды превращаются в пар; IV – зона конденсации, в которой происходит конденсация углеводородов и паров, нефть и вода проталкиваются к добывающим скважинам газами, образовавшимися в результате горения СО2, СО, N; V – зона увеличенной насыщенности; VI – зона увеличенной нефтенасыщенности, в которую перемещается нефть из предыдущих зон, температура в которой близка к первоначальной; VII – невозмущенная зона, в которой пластовая т1мпература остается первоначальной.Экспериментальные работы позволили установить следующие количественные данные: 1) на горение расходуется до 15% запасов пластовой нефти; 2) горение ведется при температуре около 375С, на что требуется 20…40 кг кокса на 1 куб.м. породы; 3) для сжигания 1 кг кокса требуется 11,3 куб.м., воздуха при коэффициенте его использования 0,7…0,9.Например, на залежи Павлона Гора за 66 суток было закачено 600 тыс.куб.м. воздуха.Материальный баланс процесса ВГ представляется так: Iн = Iнд + Iнг + Iуггде Iн – количество нефти до процесса; Iнд - количество добытой нефти в регультате ВГ; Iнг – количество сгоревшей нефти; Iуг – количество нефти, превратившейся в углеводородный газ.

При вытеснении нефти из пласта растворителями в качестве вытесняющей фазы используются растворимые в нефти сжиженные пропан, бутан, смесь пропана с бутаном. В пласте они смешиваются с нефтью, уменьшая ее вязкость, что ведет к увеличению скорости фильтрации.

При закачке в пласт углекислоты Углекислый газ СО2, закачиваемый в пласт в жидком виде, смешиваясь в нефтью, уменьшает ее вязкость, увеличивает подвижность, снижает поверхностное натяжение на границе «нефть-порода» Жидкая углекислота экстрагирует из нефти легкие фракции, создавая активно-действующий на породу вал из смеси СО2, и углеводородов и способствующий лучшему отмыванию нефти из пласта. Установлено и химическое взаимодействие СО с породой, ведущее к увеличению ее проницаемости.По данным БашНИПИнефть нефтеотдача заметно увеличивается после применения СО концентрацией 4…5% (по массе).Свойства СО2,: бесцветный газ, относительная плотность 1,529 кг/куб.м., критическая температура 31,1 СО2; критическое давление 7,29 Мпа; плотность 468 кг/куб/м; при Т=20оС Р = 5,85 Мпа превращается в бесцветную жидкость с плотностью 770 кг/куб.м. Хорошо растворяется в воде и нефти, снижая ее вязкость на 10…500%. В настоящее время реализовано несколько технологических схем закачки углекислоты в пласт. Вот несколько из них: закачка карбонизированной воды, закачка углекислого газа, создание оторочки из СО с последующим вытеснением водой, углеводородами или их смесью.По данным исследований нефтеотдача при применении углекислоты значительно возрастает при увеличении оторочки до 10% порового объема пласта. Источниками СО2 являются обработанные газы тепловых установок (11…13%) побочная продукция химических производств (до 99%), месторождения нефтяных газов (до 20%).Закачка СО2 впервые была осуществлена на Александровской площади Туймазинского месторождения в 1967 г. На 1.01.1975 г. в пласт было закачено 252,5 тыс.куб.м. карбонизированной воды с концентрацией СО2 – 1,7%. Израсходовано 4,1 тыс.т. углекислоты. Установлено увеличение охвата пласта заводнением по мощности на 30%, приемистость нагнетательных увеличивается на 10…40%.Возврат углекислоты в виде добытой жидкости составил 238,8 т (5,7% от закачанной в пласт).Крупномасштабные работы по закачке СО2 ведутся на ряде месторождений США. Так, на месторождении Форд-Джерелдин с 1981 г. ведется закачка СО2 в объеме 570 тыс.куб.м./сут через 98 нефтяных скважин по пятиточечной сетке.Нефть добывают из 154 скважин. Характеристика месторождения: глубина пласта 815 м, пористость 23%, толщина 7 м, проницаемость 64-10 кв.мкм, вязкость нефти 1,4 Мпа-с, плотность 815 кг/куб.м., пластовая температура 28С. Давление закачки 13,6 Мпа, стоимость СО2 46..53 долл. За 1000 куб.м. Эффективность применения СО2 оценивается дополнительно добытой нефтью, величина которой различна для разных районов и составляет до 12% от начальных геологических запасов.

Гидроразрыв пласта

Гидроравлический разрыв пластов - одно из эффективнейших средств воздействия на призабойную зону скважин. Этот метод применяется для освоения скважин для повышения продуктивности нефтяных и газовых месторождений и для повышения поглотительной способности нагнетательных скважин, при изоляции пластовых вод и т.д.

Процесс гидроразрыва пластов заключается в создании искусственных и расширения имеющихся трещин в породах призабойной зоны воздействием повышенных давлений жидкости, нагнетаемой в скважину. При повышении давления в породах пласта образуются новые или открываются или расширяются имеющиеся трещины. Вся эта система трещин связывает скважину с удаленными от забоя продуктивными частями пласта. Для предотвращения смыкания трещин после снижения давления в них вводят крупнозернистый песок, добавляемый в жидкость, нагнетаемую в скважину. Радиус трещин может достигать нескольких десятков метров.

При разрыве не фильтрующейся жидкостью механизм разрыва пласта становится аналогичным механизму разрыва толстостенных сосудов. Образующиеся при этом трещины имеют, как правило, вертикальное или наклонное направление. При разрыве фильтрующейся жидкостью давление разрыва обычно значительно меньше, чем при разрыве нефильтрующимися жидкостями, так как в последнем случае механизм разрыва пород сходен с механизмом разрыва толстостенного сосуда. Фильтрующаяся жидкость, проникшая в пласт, вследствие большой площади контакта с породой, Передаёт на неё большие усилия, достаточные для разрыва при давлениях, значительно меньших, чем необходимо для разрушения пласта нефильтрующейся жидкостью.

Процесс разрыва в большой степени зависит от физических свойств жидкости и, в частности от ее вязкости. Чтобы давление разрыва было наименьшим, нужно, чтобы она была фильтрующейся. Повышение вязкости так же, как и уменьшение фильтруемости жидкостей, применяемых при разрыве пластов, осуществляется введением в них соответствующих добавок. Такими загустителями для углеводородных жидкостей, применяемых при разрыве пластов, являются соли органических кислот, высокомолекулярные и коллоидные соединения нефти (например, нефтяной гудрон и другие отходы нефтепереработки). Значительной вязкостью и высокой песконесущей способностью обладают некоторые нефти, керосино-кислотные и нефте-кислотные эмульсии, применяемые при разрыве карбонатных коллекторов, и водо-нефтянные эмульсии. Эти жидкости и используются в качестве жидкостей разрыва и жидкостей-песконосителей при разрыве пластов в нефтяных скважинах.

Применение жидкостей разрыва и жидкостей-песконосителей на углеводородной основе для разрыва пластов в водонагнетательных скважинах может привести к ухудшению проницаемости пород для воды вследствие образования смесей воды с углеводородами. Во избежание этого явления пласты в водонагнетательных скважинах разрывают загущенной водой. Для загущения применяют сульфид-спиртовую борду (ССБ) и другие производные целлюлозы, хорошо растворимые в воде.

Песок, предназначенный для заполнения трещин, должен удовлетворять следующим требованиям:

1) образовывать прочные песчаные подушки и не разрушаться под давлением;

2) сохранять высокую проницаемость под действием внешнего давления.

Этим требованиям удовлетворяет крупнозернистый, хорошо окатанный и однородный по гранулометрическому составу песок, обладающий высокой механической прочностью. Наибольшее применение получили чистые кварцевые пески с размером зерен от 0,5 до 1,0 мм.

Наши рекомендации