Общие свойства трансурановых элементов
Трансурановые элементы,химические элементы, расположенные в периодической системе элементов Д. И. Менделеева за ураном, то есть с атомным номером Z 93. Из-за относительно высокой скорости радиоактивного распада трансурановых элементов в заметных количествах не сохранились в земной коре. Возраст Земли около 5109 лет, а период полураспада T1/2 наиболее долгоживущих изотопов трансурановых элементов меньше 107 лет. За время существования Земли трансурановых элементов, возникшие в процессе нуклеосинтеза, либо полностью распались, либо их количество резко уменьшилось (до 1012 раз). В природных минералах найдены микроколичества 244Pu — наиболее долгоживущего из трансурановых элементов (T1/2 ~ 8106 лет), который, возможно, сохранился на Земле с момента её формирования. В урановых рудах обнаружены следы 237Np (T1/2 ~ 2,14106 лет) и 239Pu (T1/2 ~ 2,4104 лет), которые образуются в результате ядерных реакций с участием ядер U.
Основным методом получения нептуния, плутония и америция является облучение урана, нептуния, плутония медленными нейтронами:
В свободном состоянии нептуний, плутоний, америций – серебристые металлы большой плотности, в порошкообразном состоянии они пирофорны.
Химия водных растворов этих элементов исследована с использованием микрохимии из-за их высокой массовой активности Все рассматриваемые элементы в степени окисления +3и +4 находятся в водных растворах ( в отсутствие гидролиза и комплексообразования) в виде гидратированных ионов состава [ Me(H2O)x]n+.
Склонность к комплексообразованию актиноидов в степени окисления +3 изменяется в ряду:
Pu≥ Am >Np>U
Все эти металлы сплавляются друг с другом в широком интервале концентраций и проявляют способность образовывать интерметаллические соединения.
Наиболее сложной проблемой является отделение трансурановых элементов от облучаемого элемента и друг от друга.
Решение этой задачи основано на том, что для каждого элемента рассматриваемой группы характерна своя устойчивая степень окисления: для урана +6, для нептуния +5, для плутония +4, для америция +3. Наиболее эффективными являются ионообменные и экстракционные методы. Меньшее значение для целей разделения и выделения этих элементов имеют осадительные методы.
Практическое использование элементов рассматриваемой группы определяется их ядерно-физическими характеристиками, а не химическими свойствами. Многие изотопы рассматриваемых элементов способны к делению под действием нейтронов и используются в качестве ядерного топлива.
Остановимся подробнее на рассмотрении отдельных элементов этой группы.
10.9.2 НЕПТУНИЙ 93Np
Np Нептуний | [Rn] 7s2 5f4 6d1 |
Первый трансурановый элемент нептуний 93Npоткрыт в 1940 г. Э. Мак - Миланом и П. Эйблсоном в лаборатории Г. Сиборга в Беркли (США) при облучении урана медленными нейтронами.
В настоящее время получено 11 изотопов нептуния с массовыми числами 231-241. Один из изотопов нептуния, , является родоначальником радиоактивного семейства 4n+1, обнаружен в природных минералах урана. Отношение / в урановой смоляной руде из Конго составляет около 1.8∙10-12.
Основным источником получения нептуния в настоящее время служат ядерные реакции с участием изотопов урана, протекающие под действием нейтронов, дейтонов и б-частиц. Наиболее важны в этом отношении реакции, происходящие в ядерных реакторах, предназначенных для производства и энергетических реакторах на уране, обогащенном :
,
,
Скорость накопления нептуния в таких установках весьма высока и может составлять в реакторах для производства 0,1 % скорости образования плутония. Так как плутоний производится в очень больших количествах то, очевидно, что при этом образуются значительные количества .
Другие изотопы нептуния получают с помощью ускорителей частиц:
,
Нептуний - пятый член ряда актиноидов. Строение электронной оболочки атома нептуния отвечает схеме 5s2 5p65d10 5f4 6s26p6 6d17s2.При образовании химических соединений в реакциях принимают участие электроны 7s-, 6d- и 5f-уровней.Нептуний химически активен и сходен с ураном со степенями окисления от +3 до +7 (III-VII).
Нептуний серебристо-белый металл, ковкий, температура плавления 640 0С, легко растворяется в соляной кислоте. Чистый метал получают восстановлением NpF3 парами бария или лития при температуре около 1200 °C.
По своим химическим свойствам нептуний относится, как и уран к шестой группе. В своих соединениях нептуний проявляет степени окисления +3, + 4, +5, + 6, +7. В водных растворах нептуний может иметь такие же степени окисления.
Химия водных растворов нептуния исследована в основном с использованием миллиграммовых количеств из-за высокой массовой активности.
Разные ионы нептуния по-разному окрашивают растворы: Np3+ - в голубой или пурпурный цвет, Np4+ - в желто-зеленый, NpO2+- в голубовато-зеленый, NpO2+2 - в розовый или красный.
При отделении нептуния от продуктов деления из топливной смеси используется многообразие степеней окисления, проявляемых ураном, плутонием и нептунием. В зависимости от валентного состояния эти элементы ведут себя по- разному при соосаждении, комплексообразовании, экстракции растворителями и катионном и анионном обмене. Следовательно, при выделении любого из этих элементов возможно широкое применение разнообразных химических способов.
- прекрасный стартовый материал для пролучения - ценного топлива ядерных космических батарей и других деликатных устройств вроде стимулятора сердечной деятельности или искусственного сердца. Нептуний-237 материал способный к цепному ядерному делению. По опубликованным оценкам критическая масса Np237 - 90 кг (диапазон оценок 75-105 кг). Высокое значение критической массы (почти удвоенное по отношению к обогащенному урану-235) и высокая стоимость производства делают его непривлекательным для оружейного использования. Он обладает очень низким уровнем спонтанного деления, менее 0.05 делений/с-кг. Высокое значение критической массы (почти удвоенное по отношению к обогащенному урану-235) и высокая стоимость производства делают его непривлекательным для оружейного использования. Определенное количество Np-237 обычно образуется из захвата нейтронов U-235. Типичный энергетический реактор способен дать около 0.4 кг Np-237 на тонну горючего. Ядерные реакторы на быстрых нейтронах могут произвести значительно большее количество.
10.9.3 ПЛУТОНИЙ (94PU)
Плутоний был впервые химически выделен в 1940 г. в лаборатории Г. Сиборга как продукт, образовавшийся в результате облучения урана дейтронами:
Примечательно, что только после искусственного получения плутоний был обнаружен в природе: в ничтожно малых количествах 239Pu обычно содержится в урановых рудах как продукт радиоактивного превращения урана.
Это первый элемент, созданный в значительных количествах синтетическим путем, т. е. в результате ядерных превращений других элементов.
В настоящее время известно 16 изотопов плутония с массовыми числами 232-246. Все они получены искусственным путем. Изотопы с массовыми числами менее 239 образуются при облучении урана на циклотроне или при распаде ядер более тяжелых элементов.
( .....
Строение электронной оболочки атома плутония отвечает схеме 5f6 6s26p6 7s2.
По внешнему виду металлический плутоний сходен с ураном, и так же как уран обладает полиморфизмом. Температура плавления плутония 6390 С, температура кипения равна 3780 С.
Плутоний, также как уран и нептуний, активный металл, при нагревании на воздухе окисляется легче, чем уран, а мелкоизмельченный - пирофорен, при 3000С самовозгорается. По своим химическим свойствам плутоний относится, как и уран к шестой группе.
В своих соединениях он проявляет степени окисления +3, + 4, +5, + 6, +7.
В водных растворах плутоний может иметь такие же степени окисления. Химия водных растворов плутония исследована в основном с использованием миллиграммовых масс из-за высокой массовой активности. Четырехвалентный плутоний очень склонен к образованию комплексных соединений с различными кислотами. Например, соляная и хлорная кислоты дают комплексные ионы PuCl и PuCl
Практическое использование плутония определяется его ядерно-физическими характеристиками. Изотопы плутония способны к делению под действием нейтронов медленных нейтронов и используются в качестве ядерного топлива. служит источником получения ядерного топлива - . Изотопные источники на основе использовались в космических летательных аппаратах для термостатирования замкнутых объектов с электронной аппаратурой, для жизнеобеспечения космических орбитальных станций и снабжения их электроэнергией.
Изотопы , испускающие г – кванты с малой энергией используют в качестве источников возбуждения в рентгенофлюоресцентном анализе.
используется для создания стимуляторов сердечной деятельности.
Работа с плутонием существенно затруднена его необычайной токсичностью, делающей плутоний одним из наиболее опасных ядов. ПДК для 239Pu в открытых водоемах и воздухе рабочих помещений составляет соответственно 81,4 и 3,3·10−5 Бк/л.
Большинство изотопов плутония обладают высокой величиной плотности ионизации и малой длиной пробега частиц, поэтому его токсичность обусловлена не столько его химическими свойствами (вероятно, в этом отношении плутоний токсичен не более, чем другие тяжелые металлы), сколько ионизирующим действием на окружающие ткани организма. Плутоний относится к группе элементов с особо высокой радиотоксичностью. В организме плутоний производит большие необратимые изменения в скелете, печени, селезенке, почках, вызывает рак легких. Максимально допустимое содержание плутония в организме не должно превышать десятых долей микрограмма.
10.9.4 АМЕРИЦИЙ (95AM )
Am Америций | [Rn] 7s2 5f7 |
Америцийвпервыесинтезирован и идентифицирован в 1944 г. Г. Сиборгом с сотрудниками при облучении медленными нейтронами в результате реакции последовательного захвата двух нейтронов ядрами плутония:
Возможны и другие методы получения америция. Америций - металл серебристо-белого цвета, тягучий и ковкий. Больше всего он похож на металлы редкоземельного семейства. Америций медленно тускнеет в сухом воздухе при комнатной температуре. Имеет две аллотропные формы. Температура плавления - 1175 °С.
В своих соединениях америций проявляет степени окисления +2,+3, +4, +5, +6.
Трехвалентный америций наиболее распространен в водных растворах и его состояние очень сходно с остальными актиноидными и лантаноидными элементами.
Четырехвалентный америций известен только в твердом состоянии. Америций реагирует с кислородом образуя диоксид AmO2 и с водородом образуя гидрид AmH4.
У пятивалентного америция обнаружено одно очень интересное химическое свойство - способность к диспропорционированию. Это значит, что для химического взаимодействия в кислых растворах ему не нужны партнеры-реагенты. Окислительно-восстановительная реакция идет между ионами пятивалентного америция: один из них присоединяет два электрона, облагая данью двух соседей. В системе появляется ион америция (III) и два иона америция (VI). Причиной этого необычного явления считают аномальную разницу окислительно-восстановительных потенциалов пар Am (III) - Am (VI) и Am (III) - Am (V).
Наиболее распространенными методами получения америция в металлическом состоянии является восстановление фторида щелочью или щелочноземельными металлами или электролизом расплавов его солей.
Самый долгоживущий изотоп америция - 243Am, он живет 8 000 лет и используется пока для радиохимических исследований и накопления более отдаленных трансуранов, вплоть до фермия. Значительно многообразие применение самого первого изотопа америция -241Am. период полураспада которого 433 года.
Этот изотоп, распадаясь, испускает альфа-частицы и мягкие (60 кэВ) гамма-лучи (энергия жестких гамма-квантов, испускаемых кобальтом-60 - несколько МэВ). В промышленности используются различные контрольно-измерительные и исследовательские приборы с америцием-241. В частности, такими приборами пользуются для непрерывного измерения толщины стальной (от 0.5 до 3 мм) и алюминиевой (до 50 мм) ленты, а также листового стекла. Аппаратуру с америцием-241 используют и для снятия электростатических зарядов в промышленности с пластмасс, синтетических пленок и бумаги. Он находится и внутри некоторых детекторов дыма (~0.26 микрограмма на детектор). Сейчас Am-241 получают в промышленном количестве при распаде Pu-241:
Так как обычно присутствует в только что выработанном оружейном плутонии, 241Am постепенно накапливается в веществе. В связи с этим, он играет важную роль в старении оружия. Свежеизготовленный оружейный плутоний содержит 0.5-1.0% Pu-241, реакторный плутоний имеет от 5-15% до 25% Pu-241. Через несколько десятилетий почти весь Pu-241 распадется в Am-241.
Энергетика альфа-распада 241Am и относительно короткое время жизни создают высокую удельную радиоактивность и тепловой выход. Большая часть альфа- и гамма-активности старого оружейного плутония обусловливается 241Am. Кроме того важной областью применения рассматриваемых элементов является изготовление на основе изотопных источников. Эти источники могут быть использованы для получения электрической энергии, теплоты и механической энергии. Изотопы , испускающие г – кванты с малой энергией используют в качестве источников возбуждения в рентгенофлюоресцентном анализе. имеет очень большое сечение деления и следовательно, малую критическую массу, что позволяет использовать его в качестве ядерного топлива в небольших реакторах, пригодных для космических исследований.
10.10 ТРАНСАМЕРИЦИЕВЫЕ АКТИНОИДЫ (96Cm, 97Bк, 98Cf, 99Es, 100Fm, 101Md, 102No, 103Lr)