Сера. Сероводород. Сульфиды
Сера – элемент 3‑го периода и VIA‑группы Периодической системы, порядковый номер 16, относится к халькогенам. Электронная формула атома [10Ne]3s23p4, характерные степени окисления 0, ‑II, +IV и +VI, состояние SVI считается устойчивым.
Шкала степеней окисления серы:
Электроотрицательность серы равна 2,60, для нее характерны неметаллические свойства. В водородных и кислородных соединениях находится в составе различных анионов, образует кислородсодержащие кислоты и их соли, бинарные соединения.
В природе – пятнадцатый по химической распространенности элемент (седьмой среди неметаллов). Встречается в свободном (самородном) и связанном виде. Жизненно важный элемент для высших организмов.
Сера S. Простое вещество. Желтая кристаллическая (α‑ромбическая и β‑моноклинная,
при 95,5 °C) или аморфная (пластическая). В узлах кристаллической решетки находятся молекулы S8 (неплоские циклы типа «корона»), аморфная сера состоит из цепей Sn. Низкоплавкое вещество, вязкость жидкости проходит через максимум при 200 °C (разрыв молекул S8, переплетение цепей Sn). В паре – молекулы S8, S6, S4, S2. При 1500 °C появляется одноатомная сера (в химических уравнениях для простоты любая сера изображается как S).
Сера не растворяется в воде и при обычных условиях не реагирует с ней, хорошо растворима в сероуглероде CS2.
Сера, особенно порошкообразная, обладает высокой активностью при нагревании. Реагирует как окислитель с металлами и неметаллами:
а как восстановитель – с фтором, кислородом и кислотами (при кипячении):
Сера подвергается дисмутации в растворах щелочей:
3S0 + 6КОН (конц.) = 2K2S‑II + K2SIVO3 + 3H2O
При высокой температуре (400 °C) сера вытесняет иод из иодоводорода:
S + 2НI(г) = I2 + H2S,
но в растворе реакция идет в обратную сторону:
I2 + H2S(p) = 2 HI + S↓
Получение: в промышленности выплавляется из природных залежей самородной серы (с помощью водяного пара), выделяется при десульфурации продуктов газификации угля.
Сера применяется для синтеза сероуглерода, серной кислоты, сернистых (кубовых) красителей, при вулканизации каучука, как средство защиты растений от мучнистой росы, для лечения кожных заболеваний.
Сероводород H2S. Бескислородная кислота. Бесцветный газ с удушающим запахом, тяжелее воздуха. Молекула имеет строение дважды незавершенного тетраэдра [::S(H)2]
(sp3‑гибридизация, валетный угол Н – S–Н далек от тетраэдрического). Неустойчив при нагревании выше 400 °C. Малорастворим в воде (2,6 л/1 л Н2O при 20 °C), насыщенный раствор децимолярный (0,1М, «сероводородная вода»). Очень слабая кислота в растворе, практически не диссоциирует по второй стадии до ионов S2‑ (максимальная концентрация S2‑ равна 1 10‑13 моль/л). При стоянии на воздухе раствор мутнеет (ингибитор – сахароза). Нейтрализуется щелочами, не полностью – гидратом аммиака. Сильный восстановитель. Вступает в реакции ионного обмена. Сульфидирующий агент, осаждает из раствора разноокрашенные сульфиды с очень малой растворимостью.
Качественные реакции – осаждение сульфидов, а также неполное сгорание H2S с образованием желтого налета серы на внесенном в пламя холодном предмете (фарфоровый шпатель). Побочный продукт очистки нефти, природного и коксового газа.
Применяется в производстве серы, неорганических и органических серосодержащих соединений как аналитический реагент. Чрезвычайно ядовит. Уравнения важнейших реакций:
Получение: в промышленности – прямым синтезом:
Н2 + S = H2S(150–200 °C)
или при нагревании серы с парафином;
в лаборатории – вытеснением из сульфидов сильными кислотами
FeS + 2НCl (конц.) = FeCl2 + H2S↑
или полным гидролизом бинарных соединений:
Al2S3 + 6Н2O = 2Al(ОН)3↓ + 3H2S↑
Сульфид натрия Na2S. Бескислородная соль. Белый, очень гигроскопичный. Плавится без разложения, термически устойчивый. Хорошо растворим в воде, гидролизуется по аниону, создает в растворе сильнощелочную среду. При стоянии на воздухе раствор мутнеет (коллоидная сера) и желтеет (окраска полисульфида). Типичный восстановитель. Присоединяет серу. Вступает в реакции ионного обмена.
Качественные реакции на ион S2‑ – осаждение разноокрашенных сульфидов металлов, из которых MnS, FeS, ZnS разлагаются в НCl (разб.).
Применяется в производстве сернистых красителей и целлюлозы, для удаления волосяного покрова шкур при дублении кож, как реагент в аналитической химии.
Уравнения важнейших реакций:
Na2S + 2НCl (разб.) = 2NaCl + H2S↑
Na2S + 3H2SO4 (конц.) = SO2↑ + S↓ + 2H2O + 2NaHSO4 (до 50 °C)
Na2S + 4HNO3 (конц.) = 2NO↑ + S↓ + 2H2O + 2NaNO3 (60 °C)
Na2S + H2S (насыщ.) = 2NaHS
Na2S(т) + 2O2 = Na2SO4 (выше 400 °C)
Na2S + 4H2O2 (конц.) = Na2SO4 + 4H2O
S2‑ + M2+ = MnS (телесн.)↓; FeS (черн.)↓; ZnS (бел.)↓
S2‑ + 2Ag+ = Ag2S (черн.)↓
S2‑ + M2+ = СdS (желт.)↓; PbS, CuS, HgS (черные)↓
3S2‑ + 2Bi3+ = Bi2S3 (кор. – черн.)↓
3S2‑ + 6H2O + 2M3+ = 3H2S↑ + 2M(OH)3↓ (M = Al, Cr)
Получение в промышленности – прокаливание минерала мирабилит Na2SO4 10Н2O в присутствии восстановителей:
Na2SO4 + 4Н2 = Na2S + 4Н2O (500 °C, кат. Fe2O3)
Na2SO4 + 4С (кокс) = Na2S + 4СО (800–1000 °C)
Na2SO4 + 4СО = Na2S + 4СO2 (600–700 °C)
Сульфид алюминия Al2S3. Бескислородная соль. Белый, связь Al – S преимущественно ковалентная. Плавится без разложения под избыточным давлением N2, легко возгоняется. Окисляется на воздухе при прокаливании. Полностью гидролизуется водой, не осаждается из раствора. Разлагается сильными кислотами. Применяется как твердый источник чистого сероводорода. Уравнения важнейших реакций:
Al2S3 + 6Н2O = 2Al(ОН)3↓ + 3H2S↑ (чистый)
Al2S3 + 6НCl (разб.) = 2AlCl3 + 3H2S↑
Al2S3 + 24HNO3 (конц.) = Al2(SO4)3 + 24NO2↑ + 12H2O (100 °C)
2Al2S3 + 9O2 (воздух) = 2Al2O3 + 6SO2 (700–800 °C)
Получение: взаимодействие алюминия с расплавленной серой в отсутствие кислорода и влаги:
2Al + 3S = AL2S3(150–200 °C)
Сульфид железа (II) FeS. Бескислородная соль. Черно‑серый с зеленым оттенком, тугоплавкий, разлагается при нагревании в вакууме. Во влажном состоянии чувствителен к кислороду воздуха. Нерастворим в воде. Не выпадает в осадок при насыщении растворов солей железа(II) сероводородом. Разлагается кислотами. Применяется как сырье в производстве чугуна, твердый источник сероводорода.
Соединение железа(III) состава Fe2S3 не известно (не получено).
Уравнения важнейших реакций:
Получение:
Fe + S = FeS (600 °C)
Fe2O3 + H2 + 2H2S = 9FeS + 3H2O (700‑1000 °C)
FeCl2 + 2NH4HS (изб.) = FeS ↓ + 2NH4Cl + H2S↑
Дисульфид железа FeS2. Бинарное соединение. Имеет ионное строение Fe2+ (–S – S–)2‑. Темно‑желтый, термически устойчивый, при прокаливании разлагается. Нерастворим в воде, не реагирует с разбавленными кислотами, щелочами. Разлагается кислотами‑окислителями, подвергается обжигу на воздухе. Применяется как сырье в производстве чугуна, серы и серной кислоты, катализатор в органическом синтезе. В природе – рудные минералы пирит и марказит.
Уравнения важнейших реакций:
FeS2 = FeS + S (выше 1170 °C, вакуум)
2FeS2 + 14H2SO4 (конц., гор.) = Fe2(SO4)3 + 15SO2↑ + 14Н2O
FeS2 + 18HNO3 (конц.) = Fe(NO3)3 + 2H2SO4 + 15NO2↑ + 7H2O
4FeS2 + 11O2 (воздух) = 8SO2 + 2Fe2O3 (800 °C, обжиг)
Гидросульфид аммония NH4HS. Бескислородная кислая соль. Белый, плавится под избыточным давлением. Весьма летучий, термически неустойчивый. На воздухе окисляется. Хорошо растворим в воде, гидролизуется по катиону и аниону (преобладает), создает щелочную среду. Раствор желтеет на воздухе. Разлагается кислотами, в насыщенном растворе присоединяет серу. Щелочами не нейтрализуется, средняя соль (NH4)2S не существует в растворе (условия получения средней соли см. в рубрике «H2S»). Применяется в качестве компонента фотопроявителей, как аналитический реагент (осадитель сульфидов).
Уравнения важнейших реакций:
NH4HS = NH3 + H2S (выше 20 °C)
NH4HS + НCl (разб.) = NH4Cl + H2S↑
NH4HS + 3HNO3 (конц.) = S↓ + 2NO2↑ + NH4NO3 + 2H2O
2NH4HS (насыщ. H2S) + 2CuSO4 = (NH4)2SO4 + H2SO4 + 2CuS↓
Получение: насыщение концентрированного раствора NH3 сероводородом:
NH3 Н2O (конц.) + H2S(г) = NH4HS + Н2O
В аналитической химии раствор, содержащий равные количества NH4HS и NH3 Н2O, условно считают раствором (NH4)2S и используют формулу средней соли в записи уравнений реакций, хотя сульфид аммония полностью гидролизуется в воде до NH4HS и NH3 • Н2O.
Диоксид серы. Сульфиты
Диоксид серы SO2. Кислотный оксид. Бесцветный газ с резким запахом. Молекула имеет строение незавершенного треугольника [: S(O)2] (sр2‑гибридизация), содержит σ,π‑связи S=O. Легко сжижается, термически устойчивый. Хорошо растворим в воде (~40 л/1 л Н2O при 20 °C). Образует полигидрат, обладающий свойствами слабой кислоты, продукты диссоциации – ионы HSO3‑ и SO32‑. Ион HSO3‑ имеет две таутомерные формы – симметричную (некислотную) со строением тетраэдра [S(H)(O)3] (sр3‑гибридизация), которая преобладает в смеси, и несимметричную (кислотную) со строением незавершенного тетраэдра [: S(O)2(OH)] (sр3‑гибридизация). Ион SO32‑ также тетраэдрический [: S(O)3].
Реагирует со щелочами, гидратом аммиака. Типичный восстановитель, слабый окислитель.
Качественная реакция – обесцвечивание желто‑коричневой «йодной воды». Промежуточный продукт в производстве сульфитов и серной кислоты.
Применяется для отбеливания шерсти, шелка и соломы, консервирования и хранения фруктов, как дезинфицирующее средство, антиоксидант, хладагент. Ядовит.
Соединение состава H2SO3 (сернистая кислота) не известно (не существует).
Уравнения важнейших реакций:
Растворение в воде и кислотные свойства:
Получение: в промышленности – сжигание серы в воздухе, обогащенном кислородом, и, в меньшей степени, обжиг сульфидных руд (SO2 – попутный газ при обжиге пирита):
S + O2 = SO2(280–360 °C)
4FeS2 + 11O2 = 2Fe2O3 + 8SO2(800 °C, обжиг)
в лаборатории – вытеснение серной кислотой из сульфитов:
BaSO3(т) + H2SO4 (конц.) = BaSO4↓ + SO2↑ + Н2O
Сульфит натрия Na2SO3. Оксосоль. Белый. При нагревании на воздухе разлагается без плавления, плавится под избыточным давлением аргона. Во влажном состоянии и в растворе чувствителен к кислороду воздуха. Хорошо растворим в воде, гидролизуется по аниону. Разлагается кислотами. Типичный восстановитель.
Качественная реакция на ион SO32‑ – образование белого осадка сульфита бария, который переводится в раствор сильными кислотами (НCl, HNO3).
Применяется как реактив в аналитической химии, компонент фотографических растворов, нейтрализатор хлора при отбеливании тканей.
Уравнения важнейших реакций:
Получение:
Na2CO3 (конц.) + SO2 = Na2SO3 + CO2↑
Серная кислота. Сульфаты
Серная кислота H2SO4. Оксокислота. Бесцветная жидкость, очень вязкая (маслообразная), весьма гигроскопичная. Молекула имеет искаженно‑тетраэдрическое строение [S(O)2(OH)2] (sр3‑гибридизация), содержит ковалентные σ‑связи S – ОН и σπ‑связи S=O. Ион SO42‑ имеет правильно‑тетраэдрическое строение [S(O)4]. Обладает широким температурным интервалом жидкого состояния (~300 градусов). При нагревании выше 296 °C частично разлагается. Перегоняется в виде азеотропной смеси с водой (массовая доля кислоты 98,3 %, температура кипения 296–340 °C), при более сильном нагревании разлагается полностью. Неограниченно смешивается с водой (с сильным экзо‑эффектом). Сильная кислота в растворе, нейтрализуется щелочами и гидратом аммиака. Переводит металлы в сульфаты (при избытке концентрированной кислоты в обычных условиях образуются растворимые гидросульфаты), но металлы Be, Bi, Со, Fe, Mg и Nb пассивируются в концентрированной кислоте и не реагируют с ней. Реагирует с основными оксидами и гидроксидами, разлагает соли слабых кислот. Слабый окислитель в разбавленном растворе (за счет НI), сильный – в концентрированном растворе (за счет SVI). Хорошо растворяет SO3 и реагирует с ним (образуется тяжелая маслообразная жидкость – олеум, содержит H2S2O7).
Качественная реакция на ион SO42‑ – осаждение белого сульфата бария BaSO4 (осадок не переводится в раствор соляной и азотной кислотами, в отличие от белого осадка BaSO3).
Применяется в производстве сульфатов и других соединений серы, минеральных удобрений, взрывчатых веществ, красителей и лекарственных препаратов, в органическом синтезе, для «вскрытия» (первого этапа переработки) промышленно важных руд и минералов, при очистке нефтепродуктов, электролизе воды, как электролит свинцовых аккумуляторов. Ядовита, вызывает ожоги кожи. Уравнения важнейших реакций:
Получение в промышленности:
а) синтез SO2 из серы, сульфидных руд, сероводорода и сульфатных руд:
S + O2 (воздух) = SO2(280–360 °C)
4FeS2 + 11O2 (воздух) = 8SO2 + 2Fe2O3 (800 °C, обжиг)
2H2S + 3O2 (изб.) = 2SO2 + 2Н2O (250–300 °C)
CaSO4 + С (кокс) = СаО + SO2 + СО (1300–1500 °C)
б) конверсия SO2 в SO3 в контактном аппарате:
в) синтез концентрированной и безводной серной кислоты:
Н2O (разб. H2SO4) + SO3 =H2SO4(конц., безводн.)
(поглощение SO3 чистой водой с получением H2SO4 не проводится из‑за сильного разогревания смеси и обратного разложения H2SO4, см. выше);
г) синтез олеума – смеси безводной H2SO4, дисерной кислоты H2S2O7 и избыточного SO3. Растворенный SO3 гарантирует безводность олеума (при попадании воды тут же образуется H2SO4), что позволяет безопасно перевозить его в стальных цистернах.
Сульфат натрия Na2SO4. Оксосоль. Белый, гигроскопичный. Плавится и кипит без разложения. Образует кристаллогидрат (минерал мирабилит), легко теряющий воду; техническое название глауберова соль. Хорошо растворим в воде, не гидролизуется. Реагирует с H2SO4 (конц.), SO3. Восстанавливается водородом, коксом при нагревании. Вступает в реакции ионного обмена.
Применяется в производстве стекла, целлюлозы и минеральных красок, как лекарственное средство. Содержится в рапе соляных озер, в частности в заливе Кара‑Богаз‑Гол Каспийского моря.
Уравнения важнейших реакций:
Гидросульфат калия KHSO4. Кислая оксосоль. Белый, гигроскопичный, но кристаллогидратов не образует. При нагревании плавится и разлагается. Хорошо растворим в воде, в растворе анион подвергается диссоциации, среда раствора сильнокислотная. Нейтрализуется щелочами.
Применяется как компонент флюсов в металлургии, составная часть минеральных удобрений.
Уравнения важнейших реакций:
2KHSO4 = K2SO4 + H2SO4 (до 240 °C)
2KHSO4 = K2S2O7 + Н2O (320–340 °C)
KHSO4 (разб.) + КОН (конц.) = K2SO4 + Н2O KHSO4 + КCl = K2SO4 + НCl (450–700 °C)
6KHSO4 + М2O3 = 2KM(SO4)2 + 2K2SO4 + 3H2O (350–500 °C, M = Al, Cr)
Получение: обработка сульфата калия концентрированной (более чем 6O%‑ной) серной кислотой на холоду:
K2SO4 + H2SO4 (конц.) = 2KHSO4
Сульфат кальция CaSO4. Оксосоль. Белый, весьма гигроскопичный, тугоплавкий, при прокаливании разлагается. Природный CaSO4 встречается в виде очень распространенного минерала гипс CaSO4 2Н2O. При 130 °C гипс теряет часть воды и переходит в жжёный (штукатурный) гипс 2CaSO4 • Н2O (техническое название алебастр). Полностью обезвоженный (200 °C) гипс отвечает минералу ангидрит CaSO4. Малорастворим в воде (0,206 г/100 г Н2O при 20 °C), растворимость уменьшается при нагревании. Реагирует с H2SO4 (конц.). Восстанавливается коксом при сплавлении. Определяет большую часть «постоянной» жесткости пресной воды (подробнее см. 9.2).
Уравнения важнейших реакций: 100–128 °C
Применяется как сырье в производстве SO2, H2SO4 и (NH4)2SO4, как флюс в металлургии, наполнитель бумаги. Приготовленный из жженого гипса вяжущий строительный раствор «схватывается» быстрее, чем смесь на основе Са(ОН)2. Затвердевание обеспечивается связыванием воды, образованием гипса в виде каменной массы. Используется жженый гипс для изготовления гипсовых слепков, архитектурно‑декоративных форм и изделий, перегородочных плит и панелей, каменных полов.
Сульфат алюминия‑калия KAl(SO4)2. Двойная оксосоль. Белый, гигроскопичный. При сильном нагревании разлагается. Образует кристаллогидрат – алюжокалиевые квасцы. Умеренно растворим в воде, гидролизуется по катиону алюминия. Реагирует со щелочами, гидратом аммиака.
Применяется как протрава при крашении тканей, дубитель кож, коагулянт при очистке пресной воды, компонент составов для проклеивания бумаги, наружное кровоостанавливающее средство в медицине и косметологии. Образуется при совместной кристаллизации сульфатов алюминия и калия.
Уравнения важнейших реакций:
Сульфат хрома(III) – калия KCr(SO4)2. Двойная оксосоль. Красный (гидрат темно‑фиолетовый, техническое название хрожокалиевые квасцы). При нагревании разлагается без плавления. Хорошо растворим в воде (серо‑синяя окраска раствора отвечает аквакомплексу [Cr(Н2O)6]3+), гидролизуется по катиону хрома(III). Реагирует со щелочами, гидратом аммиака. Слабый окислитель и восстановитель. Вступает в реакции ионного обмена.
Качественные реакции на ион Cr3+ – восстановление до Cr2+ или окисление до желтого CrO42‑.
Применяется как дубитель кож, протрава при крашении тканей, реактив в фотографии. Образуется при совместной кристаллизации сульфатов хрома(III) и калия. Уравнения важнейших реакций:
Сульфат марганца (II) MnSO4. Оксосоль. Белый, при прокаливании плавится и разлагается. Кристаллогидрат MnSO4 5Н2O – красно‑розовый, техническое название марганцевый купорос. Хорошо растворим в воде, светло‑розовая (почти бесцветная) окраска раствора отвечает аквакомплексу [Mn(Н2O)6]2+; гидролизуется по катиону. Реагирует со щелочами, гидратом аммиака. Слабый восстановитель, реагирует с типичными (сильными) окислителями.
Качественные реакции на ион Mn2+ – конмутация с ионом MnO4 и исчезновение фиолетовой окраски последнего, окисление Mn2+ до MnO4 и появление фиолетовой окраски.
Применяется для получения Mn, MnO2 и других соединений марганца, как микроудобрение и аналитический реагент.
Уравнения важнейших реакций:
Получение:
2MnO2 + 2H2SO4 (конц.) = 2MnSO4 + O2↑ + 2H2O (100 °C)
Сульфат железа (II) FeSO4. Оксосоль. Белый (гидрат светло‑зеленый, техническое название железный купорос), гигроскопичный. Разлагается при нагревании. Хорошо растворим в воде, в малой степени гидролизуется по катиону. Быстро окисляется в растворе кислородом воздуха (раствор желтеет и мутнеет). Реагирует с кислотами‑окислителями, щелочами, гидратом аммиака. Типичный восстановитель.
Применяется как компонент минеральных красок, электролитов в гальванотехнике, консервант древесины, фунгицид, лекарственное средство против анемии. В лаборатории чаще берется в виде двойной соли Fe(NH4)2(SO4)2 6Н2O (соль Мора), более устойчивой к действию воздуха.
Уравнения важнейших реакций:
Получение:
Fe + H2SO4 (разб.) = FeSO4+ H2↑
FeCO3 + H2SO4 (разб.) = FeSO4 + CO2↑ + H2O
7.4. Неметаллы VA‑группы
Азот. Аммиак
Азот – элемент 2‑го периода и VA‑группы Периодической системы, порядковый номер 7. Электронная формула атома [2He]2s22p3, характерные степени окисления 0, ‑III, +III и +V, реже +II, +IV и др.; состояние Nv считается относительно устойчивым.
Шкала степеней окисления азота:
Азот обладает высокой электроотрицательностью (3,07), третий после F и О. Проявляет типичные неметаллические (кислотные) свойства. Образует различные кислородсодержащие кислоты, соли и бинарные соединения, а также катион аммония NH4+ и его соли.
В природе – семнадцатый по химической распространенности элемент (девятый среди неметаллов). Жизненно важный элемент для всех организмов.
Азот N2. Простое вещество. Состоит из неполярных молекул с очень устойчивой σππ‑связью N ≡ N, этим объясняется химическая инертность азота при обычных условиях. Бесцветный газ без вкуса и запаха, конденсируется в бесцветную жидкость (в отличие от O2).
Главная составная часть воздуха: 78,09 % по объему, 75,52 % по массе. Из жидкого воздуха азот выкипает раньше кислорода O2. Малорастворим в воде (15,4 мл/1 л Н2O при 20 °C), растворимость азота меньше, чем у кислорода.
При комнатной температуре N2 реагирует только с литием (во влажной атмосфере), образуя нитрид лития Li3N, нитриды других элементов синтезируют при сильном нагревании:
N2 + 3Mg = Mg3N2 (800 °C)
В электрическом разряде N2 реагирует с фтором и в очень малой степени – с кислородом:
Обратимая реакция получения аммиака протекает при 500 °C, под давлением до 350 атм и обязательно в присутствии катализатора (Fe/F2O3/FeO, в лаборатории Pt):
В соответствии с принципом Ле‑Шателье увеличение выхода аммиака должно происходить при повышении давления и понижении температуры. Однако скорость реакции при низких температурах очень мала, поэтому процесс ведут при 450–500 °C, достигая 15 %‑ного выхода аммиака. Непрореагировавшие N2 и Н2 возвращают в реактор и тем самым увеличивают степень протекания реакции.
Азот химически пассивен по отношению к кислотам и щелочам, не поддерживает горения.
Получение в промышленности – фракционная дистилляция жидкого воздуха или удаление из воздуха кислорода химическим путем, например по реакции 2С (кокс) + O2 = 2СО при нагревании. В этих случаях получают азот, содержащий также примеси благородных газов (главным образом аргон).
В лаборатории небольшие количества химически чистого азота можно получить по реакции конмутации при умеренном нагревании:
N‑IIIH4NIIIO2(т) = N20 + 2H2O (60–70 °C)
NH4Cl(p) + KNO2(p) = N20↑ + KCl + 2H2O (100 °C)
Применяется для синтеза аммиака, азотной кислоты и других азотсодержащих продуктов, как инертная среда проведения химических и металлургических процессов и хранения огнеопасных веществ.
Аммиак NH3. Бинарное соединение, степень окисления азота равна – III. Бесцветный газ с резким характерным запахом. Молекула имеет строение незавершенного тетраэдра [: N(H)3)] (sр3‑гибридизация). Наличие у азота в молекуле NH3 донорной пары электронов на sр3‑гибридной орбитали обусловливает характерную реакцию присоединения катиона водорода, при этом образуется катион аммония NH4+. Сжижается под избыточным давлением при комнатной температуре. В жидком состоянии ассоциирован за счет водородных связей. Термически неустойчив. Хорошо растворим в воде (более 700 л/1 л Н2O при 20 °C); доля в насыщенном растворе равна = 34 % по массе и = 99 % по объему, рН = 11,8.
Весьма реакционноспособный, склонен к реакциям присоединения. Crорает в кислороде, реагирует с кислотами. Проявляет восстановительные (за счет N‑III) и окислительные (за счет НI) свойства. Осушается только оксидом кальция.
Качественные реакции – образование белого «дыма» при контакте с газообразным НCl, почернение бумажки, смоченной раствором Hg2(NO3)2.
Промежуточный продукт при синтезе HNO3 и солей аммония. Применяется в производстве соды, азотных удобрений, красителей, взрывчатых веществ; жидкий аммиак – хладагент. Ядовит.
Уравнения важнейших реакций:
Получение: в лаборатории – вытеснение аммиака из солей аммония при нагревании с натронной известью (NaOH + СаО):
или кипячение водного раствора аммиака с последующим осушением газа.
В промышленности аммиак синтезируют из азота (см.) с водородом. Выпускается промышленностью либо в сжиженном виде, либо в виде концентрированного водного раствора под техническим названием аммиачная вода.
Гидрат аммиака NH3 Н2O. Межмолекулярное соединение. Белый, в кристаллической решетке – молекулы NH3 и Н2O, связанные слабой водородной связью H3N… НОН. Присутствует в водном растворе аммиака, слабое основание (продукты диссоциации – катион NH4‑ и анион ОН‑). Катион аммония имеет правильно‑тетраэдрическое строение (sp3‑гибридизация). Термически неустойчив, полностью разлагается при кипячении раствора. Нейтрализуется сильными кислотами. Проявляет восстановительные свойства (за счет NIII) в концентрированном растворе. Вступает в реакции ионного обмена и комплексообразования.
Качественная реакция – образование белого «дыма» при контакте с газообразным НCl.
Применяется для создания слабощелочной среды в растворе, при осаждении амфотерных гидроксидов.
В 1М растворе аммиака содержится в основном гидрат NH3 Н2O и лишь 0,4 % ионов NH4+ и ОН‑ (за счет диссоциации гидрата); таким образом, ионный «гидроксид аммония NH4OH» практически не содержится в растворе, нет такого соединения и в твердом гидрате. Уравнения важнейших реакций:
NH3 Н2O (конц.) = NH3↑ + Н2O (кипячение с NaOH)
NH3 Н2O + НCl (разб.) = NH4Cl + Н2O
3(NH3 Н2O) (конц.) + CrCl3 = Cr(OH)3↓ + 3NH4Cl
8(NH3 Н2O) (конц.) + ЗBr2(р) = N2↑ + 6NH4Br + 8Н2O (40–50 °C)
2(NH3 Н2O) (конц.) + 2КMnO4 = N2↑ + 2MnO2↓ + 4Н2O + 2КОН
4(NH3 Н2O) (конц.) + Ag2O = 2[Ag(NH3)2]OH + 3H2O
4(NH3 Н2O) (конц.) + Cu(OH)2 + [Cu(NH3)4](OH)2 + 4Н2O
6(NH3 Н2O) (конц.) + NiCl2 = [Ni(NH3)6]Cl2 + 6Н2O
Разбавленный раствор аммиака (3–10 %‑ный) часто называют нашатырным спиртом (название придумано алхимиками), а концентрированный раствор (18,5–25 %‑ный) – аммиачной водой (выпускается промышленностью).