Коагулирование и отстаивание воды
Для укрупнения мелкодисперсных и колохидных частиц с целью увеличения скорости их осаждения и способности задерживаться пористыми фильтрующими материалами применяют коагулирование.
Коллоидные частицы, обладая электрическим зарядом, взаимно отталкиваются, что препятствует их укрупнению. Для устранения этого препятствия в обрабатываемую воду, содержащую обычно отрицательно заряженные коллоидные частицы, вводят коагулянты, образующие положительно заряженные коллоиды. Взаимодействие тех и других коллоидных частиц приводит к нейтрализации их зарядов и образованию более крупных частиц в виде хлопьев. В качестве коагулянтов чаще всего применяют сернокислый алюминий (сернокислый глинозем), сернокислое железо закисное (железный купорос), сернокислое железо окисное, хлорное железо.
В результате гидролиза этих солей образуются гидраты окисей алюминия или железа, представляющие собой обычно положительно заряженные коллоиды. Образующиеся при гидролизе водородные ионы связываются присутствующими в воде бикарбонатными ионами. Если содержащихся в воде бикарбонатных ионов недостаточно, то для связывания выделяющихся при коагуляции ионов водорода к воде добавляют известь, соду или едкий натр. Доза коагулянта за-ппсит от мутности и цветности воды и для природных вод обычно составляет примерно 20—50 мг/л.
Реагентное хозяйство. Наибольшее распространение имеет мокрый способ дозирования реагентов. При этом способе комья коа-i улянта загружают в растворный бак 1 с водой (рис. II.47), откуда после растворения коагулянт поступает в расходные баки 2, в которых приготовляется раствор определенной концентрации. Этот раствор направляется в дозировочный бачок 3, а из него подается и обрабатываемую волу. Обычно устанавливают два растворных бака, работающих попеременно.
Для ускорения процесса растворения коагулянта в растворный бак подают сжатый воздух пли пар или же применяют механические мешалки.
Для ускорения процесса коагуляции в воду вводят флокулян-ты — полиакриламид или активную кремнекислоту.
Смесители. Для равномерного перемешивания коагулянта со всей массой воды служат смесители. Наибольшее распространение получили перегородчатые, дырчатые и вихревые смесители.
Перегородчатый смеситель — это лоток с тремя вертикальными поперечными перегородками, имеющими попеременно центральные и боковые проходы. Перемешивание коагулянта с водой происходит в результате интенсивных завихрений потока.
В дырчатом смесителе перемешивание осуществляется под воздействием завихрений, образующихся при проходе воды через отверстия в поперечных перегородках.
В вертикальном (вихревом) смесителе перемешивание осуществляется вследствие турбулизации вертикального потока. Смеситель может быть квадратного или круглого сечения в плане с пирамидальной или конической нижней частью
Рис. II.47. Устройство для приготовления раствора реагентов
Рис. II.48. Перегородчатая камера хлопьеобра-зования
Допускается смешивать реагенты с водой в трубопроводах и насосах, подающих воду на очистные сооружения.
Камеры хлопьеобразования. В этих камерах происходит образование хлопьев в процессе плавного перемешивания обрабатываемой воды с раствором коагулянта. Вода в камере в течение 10— 40 мин постепенно перемещается от места впуска до выпуска. Скорость движения воды в камере должна быть такой, чтобы хлопья в ней не выпадали и не разбивались. Камеры хлопьеобразования бывают перегородчатые, лопастные, вихревые и др.
Перегородчатая камера (рис. II.48) представляет собой железобетонный резервуар, разделенный продольными перегородками на коридоры. Вода проходит по этим коридорам со скоростью 0,2—0,3 м/с. Число рабочих коридоров может меняться в зависимости от мутности воды.
Лопастные камеры хлопьеобразования могут быть с вертикальным и горизонтальным расположением вала мешалок. В одной камере располагаются две или несколько мешалок. Каждая мешалка имеет от двух до шести лопастей. Вода в камерах находится в течение 20—30 мин, двигаясь со скоростью 0,2—0,5 м/с.
Вихревая камера хлопьеобразования представляет собой расширяющийся кверху конический или пирамидальный резервуар, в который вода поступает снизу. В результате движения воды с уменьшающейся скоростью боковые слои воды подсасываются в основной поток, что способствует хорошему ее перемешиванию.
Отстойники. Процесс отстаивания основан на том, что при малых скоростях движения воды взвешенные в ней частицы под действием силы тяжести осаждаются на дно. Скорость осаждения частиц зависит от их размеров, формы, удельного веса и температуры воды.
Источники водоснабжения характеризуются различным содержанием в воде взвешенных частиц, т. е. имеют разную мутность. В спязи с этим продолжительность отстаивания воды будет различной.
Осветляемая вода может двигаться в отстойнике в горизонтальном, вертикальном или радиальном направлении. В зависимости от направления потока различают отстойники горизонтальные, вертикальные и радиальные.
Горизонтальные отстойники применяют на очистных станциях производительностью более 30 000 м3/сут.
Рис. 11.49. Горизонтальный отстойник
В горизонтальном отстойнике (рис. 11.49), представляющем собой прямоугольный резервуар, вода поступает с торца и движется вдоль длинной стороны резервуара.
Относительно равномерное движение воды по всему поперечному сечению отстойника достигается устройством дырчатых перегородок, водосливов, распределительных и сборных желобов.
Для равномерного отвода воды из отстойника на расстоянии 1—■ 2 м перед задней торцовой стенкой устанавливают дырчатую перегородку. Нижнюю часть перегородки на 0,3—0,5 м выше зоны накопления и уплотнения осадка делают сплошной (без отверстий).
Глубина зоны осаждения принимается равной 2,5—3,5 м, а ширина секции отстойника — не более 6 м.
Днище горизонтальных отстойников имеет уклон к приямку для осадка, расположенному в начале отстойника. Осадок, накапливающийся в отстойнике, периодически удаляют механизированным или гидравлическим способом.
При горизонтальных отстойниках следует предусматривать камеры хлопьеобразования перегородчатого или вертикального типа со слоем взвешенного осадка или без него.
В последние годы находят распространение горизонтальные отстойники с рассредоточенным по площади сбором воды через затопленные отверстия.
Вертикальные отстойники, устраиваемые на малых очистных станциях производительностью до 3000 м3/сут, представляют собой круглый или квадратный в плане резервуар с коническим или пирамидальным днищем с углом наклона стенок 50—70°. Вода поступает по трубопроводу в центральную трубу, опускается в нижнюю часть отстойника, затем поднимается в его рабочей части и переливается через водослив в круговой лоток. Иногда вместо центральной трубы устраивают камеру хлопьеобразования водоворотного типа (рис. 11.50). В эту камеру вода поступает через сопла, из которых она выходит по касательной, создавая вращательное движение в камере. В нижней части камеры устанавливают решетки из щитов для гашения вращательного движения воды.
Рис. II.50. Вертикальный отстойник
Осветление происходит при условии, что скорость восходящего потока воды меньше скорости осаждения взвешенных частиц. Тогда эти частицы выпадают на дно. Осадок периодически удаляется самотеком по иловой трубе без прекращения работы отстойника.
Скорость восходящего потока воды v принимают в пределах 0,5— 0,75 мм/с. Диаметр отстойника не должен превышать 10 м, а отношение диаметра вертикального остойника к высоте зоны осаждения должно быть не больше 1,5. Если диаметр отстойника превышает 4 м, то кроме кругового лотка устраивают радиальные желоба.
Число отстойников на очистной станции должно быть не менее Двух.
Площадь поперечного сечения вертикального отстойника слагается из площади зоны осаждения и площади камеры хлопьеобразования.
Площадь камеры хлопьеобразования определяется из расчета пребывания воды в ней в течение 15—20 мин. Высота камеры назначается в пределах 3,5—4,5 м.
Радиальные отстойники применяют преимущественно в промышленных системах водоснабжения на очистных станциях большой производительности при высоком содержании в воде взвешенных частиц. В этих отстойниках вода подается в центр, а затем движется в радиальном направлении и сливается в периферийный сборный желоб, из которого отводится по трубе. Как и в отстойниках других типов осветление здесь происходит вследствие создания малых скоростей движения, при которых взвешенные частицы выпадают на дно.
Радиальные отстойники имеют диаметр 20—60 м, глубину 3— 5 м в центре и 1,5—3 м на периферии.
Преимущество этих отстойников состоит в том, что их конструкция позволяет осуществлять постоянное удаление осадка механизированным способом без прекращения работы отстойников.
Осветлители. Условия осветления воды значительно улучшаются при пропуске ее через слой взвешенного осадка. Частицы взвешенного осадка способствуют большему укрупнению хлопьев коагулянта. Крупные хлопья могут задержать больше взвешенных частиц, содержащихся в осветляемой воде.
На этом приципе работают сооружения, называемые осветлителями со взвешенным осадком.
Осветлители при равных объемах имеют более высокую производительность, чем отстойники, и требуют меньшего расхода коагулянта.
Для удаления воздуха, пузырьки которого могут взмучивать взвешенный осадок в осветлителе, воду предварительно направляют в воздухоотделитель.
Рис. II.51. Осветлитель коридорного типа
Осветлитель коридорного типа (рис. II.51) представляет собой прямоугольный резервуар. Коагулированная вода поступает в осветлитель по трубе 9 и через дырчатые трубы / распределяется в нижней (рабочей) части 2 осветлителя. Скорость движения воды в рабочей части должна быть такой, чтобы хлопья коагулянта находились во взвешенном состоянии. Этот взвешенный слой способствует задержанию взвешенных частиц. Степень осветления воды при этом значительно больше, чем в обычном отстойнике. Выше рабочей части находится защитная зона 3, где взвешенного слоя нет. Осветленная вода отводится по лоткам 4 и трубе 10 для последующей обработки. Избыточное количество осадка подсасывается трубой 5 через окна 6 в осадкоуплотнитель 7, откуда уплотненный осадок периодически или непрерывно сбрасывается в канализацию по трубам 8.
Скорость восходящего потока в рабочей части осветлителя принимают в пределах 1 —1,2 мм/с.
Высота слоя взвешенного осадка составляет 2—2,5 м, а высота зоны осветления 1,5—2 м. Время уплотнения осадка в осадкоуплотнителе от 3 до 12 ч.
ФИЛЬТРОВАНИЕ ВОДЫ
Обычно после осветления воды в отстойниках или осветлителях ее фильтруют. Для фильтрования воду пропускают через слой мелкозернистого фильтрующего материала, задерживающего содержащиеся в ней частицы мелкой взвеси. В качестве фильтрующего материала применяют кварцевый песок, гравий, дробленый антрацит и другие материалы.
Различают скорые, сверхскоростные и медленные фильтры. Скорые фильтры применяют при коагулировании воды, медленные — при обработке воды без коагулирования, сверхскоростные могут работать с коагулированием воды и без него.
Фильтры бывают о т к р ы т ы е (безнапорные) и напорные (закрытые). Скорые фильтры чаще всего бывают открытые, сверхскоростные всегда напорные, медленные всегда открытые. Движение воды через безнапорные, или самотечные фильтры, заполненные до определенной отметки фильтрующей загрузкой, происходит под напором, создаваемым разностью отметок уровней воды в фильтре и на выходе из него. Движение воды через слой фильтрующей загрузки напорных фильтров происходит под напором, создаваемым насосами.
Скорые фильтры. Скорый фильтр представляет собой загруженный фильтрующим материалом резервуар, снабженный устройствами для подачи воды, сбора профильтрованной воды и промывки загрузки.
Необходимость в промывке загрузки объясняется тем, что в процессе работы фильтр постепенно засоряется и его гидравлическое сопротивление увеличивается. Промывку производят чистой водой в направлении снизу вверх. Частота промывки фильтра зависит от качества сырой воды и обычно не превышает 1—2 раз в сутки.
По конструкции различают открытые скорые фильтры однопоточные сдвижением воды только сверху вниз и двухпоточные — С одновременным движением воды сверху вниз и снизу вверх. Однопоточные фильтры могут иметь загрузку из однородного фильтрующего материала или из различных материалов — двух- или многослойные фильтры.
Выбор той или иной системы фильтров определяется технологическими и технико-экономическими показателями.
Рис. II.52. Однопоточный открытый скорый фильтр
В однопоточных открытых скорых фильтрах (рис. II.52) коагулированная и осветленная вода подается по трубопроводу 3 в карман 2. Проходя фильтрующую загрузку 10 и поддерживающий гра-виЙНЫЙ слой 9, вода через дырчатое днище 5 поступает в дренаж #, откуда по трубопроводу 6 направляется в резервуар чистой воды. Труба 7 служит для опорожнения фильтра на время его ремонта. 11ромывная вода при промывке подается по трубопроводу 6, проходит поддерживающий гравийный слой 9 и фильтрующую загрузку 10 и сбрасывается в промывные желоба /. Затем загрязненная промывная вода по трубопроводу 4 направляется в водосток.
Толщина фильтрующей загрузки зависит от крупности слагающих ее зерен песка и принимается в пределах 0,7—2 м. При этом расчетные скорости фильтрования при нормальном режиме составляют 5,5—10 м/ч.
В последние годы стали применять двухслойные фильтры, загружаемые сверху на высоту 400—500 мм дробленым антрацитом, а ниже на высоту 600—700 мм кварцевым песком. Такие фильтры обладают большей грязеемкостью, чем фильтры, загруженные только песком. Производительность двухслойного фильтра почти в 2 раза больше производительности однослойного.
11оддерживающий гравийный слой устраивают высотой 650мм из чагпщ крупностью от 2 до 40 мм. Крупность загрузки увеличивается сверху вниз. Гравийный слой служит для предотвращения вымывания фильтрующего материала.
Назначение дренажа — равномерное отведение профильтрованной воды. Различают дренажи большого и малого сопротивления. Последние в настоящее время почти не применяются. Дренажи большого сопротивления бывают трубчатые и колпачковые. В последнее время широкое распространение получили также щелевые дренажи.
Они позволяют отказаться от гравийного поддерживающего слоя и тем самым уменьшить высоту фильтра.
Промывку фильтров проводят со скоростью, в 7—10 раз большей скорости фильтрования. Продолжительность промывки 5—8 мин.
Рис. II.53. Двухпоточный открытый скорый фильтр
В двухпоточных открытых скорых фильтрах (рис, II.53) основная масса воды проходит через фильтрующий материал снизу вверх, а часть воды, поступающей по трубе 3, карману 2 и желобу 1, фильтруется сверху вниз. Профильтровавшаяся вода отводится трубчатым дренажем 5, устраиваемым из щелевых асбесто-цементных или винипластовых труб.
Дренажная система располагается в толще фильтрующего слоя на расстоянии 500—600 мм от поверхности загрузки.
Промывная вода подается в дренаж 5для взрыхления верхнего слоя песка. Интенсивность подачи воды 6—8 л/ (с • м2). Затем промывная вода подается в распределительную систему 6 для промывки всего слоя загрузки. Интенсивность подачи воды 10—15 л/ (с-м2). Загрязненная вода через желоб 1, карман 2 и трубу 4 сбрасывается в водосток.
Скорость фильтрования в двухпоточных фильтрах 12 м/ч.
Крупнозернистые скорые фильтры применяют для частичного осветления воды, используемой для технических целей на промышленных предприятиях. Эти фильтры бывают напорные и открытые. Для загрузки фильтров чаще всего применяю! кварцевый песок крупностью 1—2,5 мм. Высота слоя загрузки 1,5—3 м. Скорость фильтрования 10—15 м/ч. Промывку крупнозернистых фильтров производят водой и воздухом в такой последовательности: 1) взрыхление фильтрующей загрузки водой; 2) водовоздушная промывка; 3) отмывка водой. Интенсивность промывки водой 6—8 л/ (с • м2), воздухом — 15—25 л/ (с* м2).
Сверхскоростные фильтры по конструкции бывают вертикальные и горизонтальные. Поддерживающий гравийный слой в этих фильтрах не устраивают. В нижней части фильтра располагают трубы для промывки и продувки его воздухом. Наибольшее распространение получили вертикальные фильтры. Скорости фильтрования в таких фильтрах 25—100 м/ч. Применяют их для частичного осветления воды. Работа фильтров, регулирование скорости фильтрования и промывка фильтров автоматизированы. Для очистных станций большой производительности применяют горизонтальные фильтры, имеющие большую площадь фильтрования по сравнению с вертикальными. Потери напора в фильтрах достигают 10 м.
Медленные фильтры. Медленные фильтры применяют на очистных станциях малой производительности. По способу регенерации загрузки эти фильтры бывают двух типов; 1) с удалением загрязненного слоя, 2) с отмывкой загрязненного слоя непосредственно в фильтре путем механического рыхления слоя и гидравлического удаления загрязнений. Высоту слоя загрузки песка крупностью 0,3—2 мм принимают равной 850 мм и гравия крупностью 2— 40 мм — равной 450 мм. При регенерации с отмывкой загрузки непосредственно в фильтре ширина секции фильтров должна быть не более 6 м, длина — не более 60 м. Слой воды над поверхностью загрузки рарен 1,5 м. Скорость фильтрования для медленных фильтров составляет 0,1—0,2 м/ч.
Контактные осветлители представляют собой сооружения комбинированного типа. В них совмещаются процессы хлопьеобразо-вания, отстаивания и фильтрования. Это позволяет значительно уменьшить объем сооружений. Принцип работы контактного осветлителя состоит в том, что при фильтровании воды через слой зернистой загрузки на поверхности слагающих ее зерен сорбируются взвешенные и коллоидные частицы.
Движение воды в контактных осветлителях происходит снизу вверх. Скорость фильтрования 4—5 м/ч. Для загрузки осветлителей применяют гравий и кварцевый песок. Гравийный поддерживающий слой имеет крупность зерен 2—32 мм и высоту 350—500 мм. Высота фильтрующего слоя песка 2000—2300 мм при эквивалентном диаметре зерен 0,7—2 мм.
Загрузку промывают восходящим потоком воды и воздуха. Для равномерного распределения воды и воздуха применяют трубчатую распределительную систему большого сопротивления с поддерживающим гравийным слоем или без него. Режим водовоздуш-ной промывки назначают следующий: 1) продувка 1 —1,5 мин; 2) совместная промывка водой и воздухом в течение 6—7 мин с интенсивностью подачи воды 2—3 л/ (с • м2); 3) последующая промывка водой с интенсивностью 6—7 л/ (с • м2) в течение 4—6 мин.
Контактные осветлители могут работать с постоянной скоростью фильтрования в период рабочего цикла и с переменной скоростью, убывающей к концу Цикла.
ОБЕЗЗАРАЖИВАНИЕ ВОДЫ
Вода поверхностных источников, как правило, содержит болезнетворные бактерии. В результате отстаивания и фильтрования из воды удаляется до 95% бактерий. Для уничтожения оставшихся бактерий воду обеззараживают. С этой целью используют жидкий хлор, гипохлорит натрия, растворы гипохлоритов, полученные электролитическим путем, озон, двуокись хлора и бактерицидное облучение. Воду в хозяйственно-питьевых водопроводах, питающихся из подземных источников, обеззараживают в случае возможного попадания в эти источники болезнетворных бактерий.
Хлорирование. Наиболее распространенным методом обеззараживания является хлорирование. Для хлорирования используют хлорную известь или газообразный хлор.
Хлорную известь применяют при малых расходах воды. При введении в воду хлорная известь распадается на гипохлорит кальция и хлористый кальций. Гипохлорит кальция реагирует с углекислотой или бикарбонатами кальция, находящимися в воде, образуя хлорноватистую кислоту, которая легко распадается с образованием атомарного кислорода, оказывающего бактерицидное действие. При введении в воду газообразного хлора образуются хлорноватистая и соляная кислоты. Хлорноватистая кислота распадается с выделением атомарного кислорода. Необходимый эффект хлорирования достигается в результате хорошего перемешивания и 30-минутного контакта хлора с водой. Такой контакт происходит в контактном резервуаре или в трубопроводе, подающем воду потребителям.
Вода, поступающая к потребителям, должна содержать в I л 0,3—0,5 мг хлора (так называемый остаточный хлор), что свидетельствует о достаточности введенной дозы хлора для полного обеззараживания воды. На 1 л фильтрованной воды вводят 2—3 мг хлора, а на 1 л нефильтрованной речной воды — до 6 мг хлора.
Обычно применяют двойное хлорирование, добавляя хлор перед отстаиванием и после фильтрования.
Для дозирования хлора служат хлораторы. По принципу работы их делят на вакуумные и напорные. Напорные хлораторы имеют тот недостаток, что в них газообразный хлор находится под давлением выше атмосферного и поэтому возможны утечки газа, который очень ядовит. Вакуумные хлораторы не имеют этого недостатка.
Хлор доставляют на станцию в сжиженном виде в баллонах. Из этих баллонов хлор переливают в промежуточный баллон, где он переходит в газообразное состояние. Газ поступает в хлоратор. Здесь он растворяется в водопроводной воде, образуя хлорную воду, которая вводится в трубопровод, транспортирующий воду, предназначенную для хлорирования.
При повышении дозы хлора в воде остается неприятный запах. Такую воду необходимо дехлорировать. Для предотвращения образования хлорфенольного запаха на станциях в воду подают газообразный аммиак.
Для приготовления гипохлорита натрия электролитическим способом непосредственно на очистных сооружениях служат электролизеры с графитовыми пластинчатыми или засыпными магнетито-выми электродами. Электролизеры должны располагаться в изолированном помещении.
Озонирование. Сущность процесса обеззараживания воды озоном заключается в окислении бактерий атомарным кислородом, образующимся при распаде озона. Озон одновременно уменьшает цветность, запахи и привкусы воды.
Для обеззараживания 1 л воды подземных источников требуется 0,75—-1 мг озона, а" 1 л фильтрованной воды поверхностных источников 1—3 мг озона
Озон в виде озоно-воздушной смеси получают в электрических озонаторах из кислорода воздуха. В состав озонаторной установки входят сооружения для синтеза озона и для смешения озона с водой. Подготовка воздуха для синтеза состоит в задержании взвешенных частиц на фильтре, осушке воздуха в адсорберах с силика-гелем или алюмогелем. Подготовленный воздух направляется в озонаторы.
Перемешивание полученной озоно-воздушной смеси с водой производится барботированием в колоннах, резервуарах- Применяют для этого также эжекторы-смесители и механические мешалки.
Бактерицидное облучение. Этот метод обеззараживания воды осуществляется с использованием ультрафиолетовых лучей, обладающих бактерицидными свойствами. Применяют его для обеззараживания небольших расходов воды подземных источников, а также фильтрованной воды поверхностных источников. В качестве источников излучения служат ртутно-кварцевые лампы высокого или низкого давления.
Эффект обеззараживания зависит от продолжительности и интенсивности излучения. Различают напорные бактерицидные установки, располагаемые на напорных или всасывающих трубопроводах, и безнапорные, устанавливаемые на горизонтальных трубопроводах или в специальных каналах.
Обеззараживание ультрафиолетовыми лучами не применяется для вод высокой мутности.