Условия существования клубка и глобулы.
Вследствие объёмных взаимодействий сблизившиеся участки могут притягиваться или отталкиваться. Повышение температуры приводит к увеличению отталкивания между мономерами, а понижение - к сближению. Существует температура, при которой отталкивание компенсируется притяжением. Эта температура называется -точкой или - температурой. В этой точке объёмное взаимодействие отсутствует, и макромолекула представляет собой клубок с размерами порядка l*N1/2. Клубок сохраняется при повышении температуры выше точки . В области t> из-за увеличения сил отталкивания размеры клубка возрастают, т.е. R>l*N1/2, тогда линейные размеры макромолекулы можно выразить формулой
( - характерный размер без учета объёмного взаимодействия, - коэффициент набухания молекулы.
В области , >1 и =1 при = t. В сильных растворителях притяжение электронов цепи и растворителя больше, чем звеньев цепи, что равносильно повышению их взаимного отталкивания, т.е. >1. При температурах t < во взаимодействиях преобладают силы притяжения, которые могут привести к конденсации клубка в плотную, слабо флуктуирующую глобулу. Эта глобула стабилизируется самосогласованно со сжимающим полем, обусловленным силами притяжения между мономерами. Примером перехода глобулы в клубок может служить зависимость вязкости раствора полиглутаминовой кислоты от её кислотности.
В реальных макромолекулах объёмное взаимодействие в отсутствие внешнего воздействия создаёт самосогласованное поле, приводящее к образованию глобулы. Характер распределения плотности имеет другой вид:
Профиль плотности - размытые ступеньки, в сердцевине - постоянная концентрация звеньев n0. Для данного графика R~N1/3, - радиус корреляции.
Различные типы взаимодействия в макромолекулах.
Первичная структура или основная последовательность биополимеров определяется химическими или валентными взаимодействиями. Помимо этого между молекулами действуют слабые невалентные силы, которые приводят к притяжению на больших расстояниях и отталкиванию на малых. Типичная зависимость потенциальной энергии взаимодействия U(r) двух частиц молекулярной природы можно представить в виде:
При малых расстояниях преобладает сила отталкивания, и Fотталк >0, при больших r преобладает сила притяжения. Общую энергию можно представить в виде:
U(r)=Uотт(r)-Uпритяж(r).
Минимум на графике соответствует равновесию.
Ван-дер-ваальсовые (ВВ) силы.
ВВ силы играют важнейшую роль в образовании конденсированных жидких и твёрдых состояний. Ими определяются взаимодействия газов и возникающие отклонения законов идеальных газов. Эти отклонения подчиняются уравнению Ван-дер-Ваальса для газов:
,
где a, b - константы притяжения и отталкивания; V -объем.
Биомакромолекулы можно рассматривать как своего рода конденсируемые системы, состояния которых определяются относительно слабых невалентных взаимодействий. Именно такие взаимодействия дают основной вклад к стабилизации конденсации состояния биополимеров и его изменения в процессе функционирования. Значения энергии при ВВ взаимодействиях лежат в интервале 4-8 кДж/моль и выше. Энергия при комнатной (температуре) составляет 2,5 кДж/моль, а энергия коллективных ионных связей составляет 150 -600 кДж/моль.
Силы ВВ имеют электромагнитную природу и определяются взаимодействием электрических диполей молекул. В зависимости от того, обладает ли взаимодействие молекулы электрическим дипольным моментом, или последнее возникает вследствие поляризации оболочек, существуют различные типы сил ВВ.
- коэффициент ионизации раствора макромолекул,
I - ионная сила раствора