Химические свойства моносахаридов.
Исходя из функционального состава, моносахариды проявляют свойства многоатомных спиртов, карбонильных соединений, полуацеталей и специфические свойства.
1. Свойства многоатомных спиртов проявляются в качественной реакции взаимодействия моносахаридов со свежеосажденным гидроксидом меди (II) - Сu(OH)2. В результате происходит образование растворимого хелатного комплекса ярко-синего цвета. В реакцию вступает a-диольный фрагмент молекулы моносахарида. [2глюкозы+ Cu(OH)2 +2OH-=фрагмент хелатного комплекса – глюкозата меди (II), (угл12)]
2. Свойства альдегидов проявляются в качественной реакции взаимодействия альдегидной группы с мягкими окислителями (Сu(OH)2 или Ag2O) при повышенной температуре. Данная реакция в биохимическом анализе для глюкозы называется пробой Троммера и используется для обнаружения глюкозы в моче. [глюкоза+ 2Cu(OH)2= D-глюконовая к-та+ 2CuOH+ вода, (угл13)]
3. Свойства спиртов проявляются в реакции этерификации ОН-группы под действием кислородсодержащих кислот. Биологическое значение имеют эфиры фосфорной кислоты – фосфаты, образующиеся обычно по месту последнего звена с участием фермента фосфорилазы. [α,D-глюкопираноза+ фосфорная к-та= 6-фосфат-D-глюкопираноза+ вода, (угл14)] В клетке содержится в виде дианиона. Аналогично образуются сульфаты моносахаридов, входящие в состав полисахаридов соединительной ткани.
4. Моносахариды способны восстанавливаться водородом на никеле или палладии. Продуктами восстановления являются многоатомные спиры: глюкоза-сорбит, манноза-маннит, ксилоза-ксилит, галактоза-дульцит. (угл15)
5. Свойства полуацеталей проявляются во взаимодействии циклических форм моносахаридов со спиртами, при этом полуацетальный или гликозидный гидроксил не проявляют свойств спиртов, а ведут себя специфически, образуя гликозиды. [β,D-глюкопираноза+ метанол= метил-β,D-глюкопиранозид+ вода, (угл16)]
6. К специфическим свойствам относятся различные виды окисления моносахаридов, реакции изомеризации и брожения.
Производные моносахаридов.
Аминосахара – образуются на основе моносахаридов, в молекулах которых OH-группа второго звена замещена аминогруппой NH2, напр. D-глюкозамин: (угл17)
В водном растворе он находится в циклической форме 2-амино-2-дезокси-D-глюкопираноза.
Аминогруппа часто ацелирована остатком уксусной кислоты, при этом образуется амидная группировка: -N(-H)-C(=O)-, напр. N-ацетил-D-глюкозамин:
2-ацетамидо-2-дезокси-D-глюкозамин (угл18)
2-ацетамидо-2-дезокси-D-галактопираноза (угл19)
Аминосахара входят в состав групповых веществ крови, определяя их специфичность и являются компонентами структурных полисахаридов.
Сахарные кислоты.
Представителем является D-глюкуроновая кислота, образующаяся от глюкозы: (угл20)
Глюкуроновая кислота является структурным компонентом полисахаридов. Самостоятельно участвует в обезвреживании токсических веществ, образуя с ними водорастворимые глюкурониды, и выводит их с мочой.
Выведение салициловой кислоты из организма в процессе воздействия лекарственных веществ происходит в виде О-глюкуронида, образующегося по месту полуацетатной гидроксильной глюкуроновой кислоты и фенольного гидроксила салициловой кислоты. (угл21)
Нейраминовая кислота. Получается в результате альдольной конденсации ПВК и Д-маннозамина (угл22)
Сиаловые кислоты. Они являются N-ацетильными производными нейраминовой кислоты. Ацилирование происходит ацетильным или гидроксиацетильным остатком. Например N-ацетил-D-нейраминовая кислота имеет следующее строение (угл23)
Нейраминовые и сиаловые кислоты в свободном состоянии содержатся в спиномозговой жидкости. Сиаловая кислота является компонентом специфических веществ крови, входит в состав ганглиозидов мозга и участвует в проведении нервных импульсов.
Сложные углеводы.
Полисахариды - это высокомолекулярные углеводы, по химической природе относящиеся к полигликозидам, т.е. продуктам поликонденсации моносахаридов, связанные между собой гликозидными связями.
Полисахариды имеют большую молекулярную массу и характеризуются высоким уровнем структурной организации макромолекулы.
Полисахаридные цепи могут быть разветвлёнными и неразветвлёнными, то есть линейными.
По составу полисахариды делят на
1. гомополисахариды - биополимеры, образованные из остатков одного моносахарида;
2. гетерополисахариды, образованные из остатков разных моносахаридов.
Все они имеют общее название: гликаны.
Гомополисахариды.
К биологически важным относятся крахмал, гликоген, клетчатка, состоящая из остатков глюкозы.
Крахмал - это смесь двух полисахаридов: амилозы и амилопектина в соотношении 10-20% к 80-90%. Амилоза состоит из остатков a-D-глюкопиранозы, связанных a(1®4)-гликозидными связями. В макромолекулу амилозы может включаться то 200 до 1000 остатков с общей молекулярной массой 160 тыс. единиц. (угл24)
Макромолекула амилозы свёрнута в спираль, во внутренний канал которой могут проникать молекулы небольших размеров, образуя комплексы, которые называются «соединения включения». Например, комплекс амилазы с йодом имеет синее окрашивание.
Строение амилопектина.
Амилопектин - это гомополисахарид разветвлённой структуры, в составе которого линейная цепь a-D-глюкопиранозных остатков построена за счёт a(1®4) гликозидных связей, а элементы разветвления формируются за счёт a(1®6) гликозидных связей. Между точками разветвления укладывается от 20 до 25 глюкозных остатков; молекулярная масса амилопектина »1-6 млн. единиц. (угл25)
Свойства крахмала.
Крахмал - это белое аморфное вещество, синтезируемое в растениях в процессе фотосинтеза и запасающееся в клубнях и семенах. Биохимическое превращение сводится к его гидролизу. Гидролиз в живом организме начинается в ротовой полости под действием a-амилазы слюны, где крахмал расщепляется до декстринов. Гидролиз продолжается в тонкой кишке под действием a-амилазы поджелудочной железы и заканчивается образованием молекул глюкозы.
Схема гидролиза крахмала может иметь следующий вид:
(C6H10O5)n+mH2O, a-амилаза® декстрины+qH2O, F-гидролаза® мальтоза+Н2О, мальтаза®n молекул глюкозы.
Глюкоза из кишечника по воротной вене поступает в печень, где участвует в синтезе гликогена, или кровью переносится к различным органам и тканям, где сгорает, выделяя энергию. Уровень глюкозы в норме составляет 3,3-5,0 ммоль·дм-3.
Качественным реактивом на крахмал и продукты гидролиза является раствор йода. С крахмалом он образует комплекс тёмно-синего цвета. С декстринами - от фиолетового до красно-бурого цвета. Мальтоза и глюкоза раствором йода не окрашиваются.
Гликоген или животный крахмал.
Гликоген является структурным и функциональным аналогом крахмала. Он содержится во всех животных тканях, особенно много в печени (до 20%) и мышцах (до 4%). Макромолекула гликогена из-за большого размера не проходят через мембрану, а находится внутри клетки, то есть в резерве, до тех пор, пока не возникает потребность в энергии.
Все процессы жизнедеятельности сопровождаются мобилизацией гликогена, т.е. его гидролитическим расщеплением до глюкозы.
Молекулярная масса гликогена может достигать 10-12 и даже 1000 млн. единиц. Макромолекула строится по принципу амилопектина с той лишь разницей, что участвующих a(1®6) гликозидных связей больше, т.е. гликоген имеет более разветвленное строение. Сильное разветвление цепи способствует выполнению гликогеном энергетической функции, т.к. при наличии большого числа концевых остатков обеспечивается быстрое отщепление нужного количества молекул глюкозу.
С раствором йода гликоген даёт окрашивание от винно-красного до бурого цвета.
Клетчатка или целлюлоза.
Клетчатка - это структурный гомополисахарид растительного происхождения, являющийся основой опорных тканей растений. Структурной единицей клетчатки является b,D-глюкопираноза, звенья которой связаны b(1®4) гликозидными связями. Макромолекула имеет линейное строение и содержит от 2,5 тыс. до 12 тыс. глюкозных остатков с общей молекулярной массой 1-2 млн. Схема образования: (угл26)
Внутри и между цепями возникают водородные связи, которые обеспечивают высокую механическую прочность, волокнистость, нерастворимость в воде и химическую инертность целлюлозы. Из сложных углеводов только клетчатка не расщепляется в тонком кишечнике из-за отсутствия некоторых ферментов; в толстом кишечнике она частично гидролизуется под действием ферментов микроорганизмов. В процессе пищеварения клетчатка выполняет роль балластного вещества, улучшая перистальтику кишечника.
Гетерополисахариды.
Гиалуроновая кислота.
Она является полисахаридом соединительной ткани. Её макромолекула строится из остатков дисахаридов, соединённых b(1®4) гликозидными связями.
Дисахаридный фрагмент включает остатки D-глюкуроновой кислоты и N-ацетил-D-глюкозамина, соединённых b(1®3) гликозидной связью. (угл27)
Молекулярная масса полимера достигает 2-7 млн. За счёт большого числа карбоксильных групп макромолекула связывает значительное количество воды, поэтому растворы гиалуроновой кислоты обладают повышенной вязкостью. С этим связана ее барьерная функция, обеспечивающая непроницаемость соединительной ткани для болезнетворных бактерий. В комплексе с полипептидами гиалуроновая кислота входит в состав стекловидного тела глаза, суставной жидкости, хрящевой ткани.
Гликопротеины.
Гликопротеины - это смешанные углеводсодержащие биополимеры, в которых белковая молекула связана с углеводами - олигосахаридами. К гликопротеинам относятся ферменты, гормоны, иммуноглобулины и муцины. К этим сложным веществам принадлежат вещества, определяющие групповую специфичность крови. В их основе лежит полипептидная цепь, к которой присоединяются олигосахаридные цепочки (до 55 штук).
Углеводный компонент и белковая часть связываются гликозидной связью с участием гидроксильных групп аминокислот серина и треонина. В состав углеводного компонента входят N-ацетил-D-галактозамин, N-ацетил-D-глюкозамин, D-галактоза, которые располагаются в определённой последовательности от не восстановившегося конца олигосахаридной цепочки (в количестве от 3 до 5). Эта последовательность называется детерминантой, именно она определяет специфичность группы крови. Детерминантным моносахаридом группы крови А служит N-ацетил-D-галактозамин, а группы В - D-галактоза. С изменением детерминанты меняется группа крови.
Муцины - это гликопротеины, в небелковой части которой содержится глюкозамин, сиаловая кислота, N-ацетил-D-галактозамин и остаток серной кислоты. Слово «муцины» образовано от греческого mucos-слизь. Муцины входят в состав слюны, яичного белка, секретов кишечника и бронхов. Их присутствие в растворе обеспечивает высокую вязкость среды.
A-аминокислоты. Петиды
a-аминокислоты можно рассматривать как производные карбоновых кислот, в молекулах которых один из атомов водорода замещен аминогруппой (NH2). Общее число АК достигает 300, но из них выделяют группу 20-ти наиболее важных a-АК, встречающихся в составе белков животного и растительного происхождения.
Общая формула a-АК имеет вид:
(АК1) (1 – кислотный центр, 2 – основной центр. 1 и 2 составляют основной фрагмент молекулы, в котором также выделяют хиральный центр. 3 – вариабельный фрагмент молекулы или боковая цепь)
Все a-АК за исключением глицина (H2N-CH2-COOH) являются оптически активными веществами, т.к. содержат асимметричный атом углерода и существуют в виде энантиомеров: (АК2)
В белках животного происхождения содержатся L-АК; D-АК встречаются в белках микроорганизмов.
Боковая цепь АК имеет специфический состав и строение для каждой АК. Кроме УВ-радикалов боковая цепь может содержать функциональные группы (-ОН, -SH, -COOH, -NH2) и остатки гетероциклов [пятичленный цикл с 2 азотами, (АК14)]
Состав боковой цепи определяет основные физико-химические свойства АК и белков.
1. Гидрофильность, т.е. способность полярных группировок боковой цепи к образованию водородных связей с молекулой воды объясняется содержанием в вариабельном фрагменте гидрофильных групп (-ОН, -SH, -COOH, -NH2, [-N=], [-N(H)-]).
Способность АК растворяться в воде является главным фактором, с которым связана всасываемость аминокислот и их транспортировка в организме.
К гидрофобным группам боковой цепи, снижающим растворимость, относятся УВ-радикалы и бензольное кольцо.
2. Ионогенность боковой цепи, т.е. способность ионизироваться в водородном растворе, объясняется наличием в ее составе ионогенных групп, диссоциирующих по кислотному механизму:
-COOH® -COO—+H+ (боковая цепь приобретает отрицательный заряд);
-SH® -S-+H+ (боковая цепь приобретает отрицательный заряд);
Ph-OH® Ph-O—+H+ (боковая цепь приобретает отрицательный заряд)
По основному механизму:
-NH2+H+® -NH3+
В водном растворе молекулы АК и белков, как правило, заряжены, и наличие заряда в соответствии с устойчивой гидратной оболочкой является важным фактором, определяющим устойчивость раствора белка.