Роль топлива в процессе горения.
Обычное горение. В воздухе на одну молекулу кислорода приходится примерно 4 молекулы азота. При распаде молекулы кислорода на два атома освобождается один электрон связи, который становится свободным и может работать как электрон –генератор энергии, взаимодействуя с электронной глобулой из атомов кислорода. Для связи атомов в молекулы продуктов реакции необходимы еще электроны. Их поставляет топливо, как донор электронов.
Из основной химической реакции обычного горения
С + О2 = СО2 и учете того, что в молекуле углекислого газа имеется три электрона связи ее атомов, следует, что топливо поставляет в расчете на одну молекулу кислорода два электрона. Учитывая, что в плазме каждая молекула кислорода поставляет один электрон, а топливо поставляет еще два, и стало три электрона, в целом их количество увеличилось в три раза (было – 1, стало – 3). Эти три электрона, имея мощнейший отрицательный электрический заряд, являются сильнейшими нейтрализаторами потоков положительных заряженных частиц, возбуждающих и поддерживающих реакцию горения, в том числе:
- в электрическом разряде – искре;
- в плазме при воспламенении топлива.
И если положительных частиц достаточно для ослабления межатомных связей и разрушения молекул кислорода и топлива, образования плазмы и горения с окислением до СО2, то их недостаточно для разрушения молекул азота. Они настолько связываются электронами, что при наличии топлива до разрушения азота, имеющего в два раза более прочную связь атомов, чем у кислорода, дело просто не доходит. Как видно, топливо является главным препятствием для возбуждения азотной реакции. Топливо нейтрализует положительные излучения, инициирующие разрушение особенно крепких молекул азота и направляет горение на образование СО2, поглощающего его избыточные, по отношению к воздуху, электроны. А азот остается балластом при обычном горении.
Азотная реакция. Количество электронов, высвобождаемое при распаде одной молекулы кислорода и 4-х молекул азота, составляет 9 штук. В то же время, если предположить, что из четырех молекул азота 4×28 = 112 образовалось
112 : 16 = 7 атомов кислорода, то общее количество атомов кислорода (9 штук) и количество электронов совпадает друг с другом. В этом случае для азотной реакции с образованием, например, 4-х молекул воды, дополнительных электронов, а, следовательно, и топлива, – не нужно. Более того, как указано выше, при наличии топлива азотная реакция вообще не возникает, и не возникнет, так как топливо своими электронами нейтрализует все избыточные положительные излучения, необходимые для разрушения молекул азота. Поскольку в действующих автомобилях топливо нужно для пуска на холостом ходу, то практика их настройки на азотный цикл показывает, что он возникает только при очень обедненной топливовоздушной смеси. Если мощность холостого хода ~10%, то соотношение топливо – воздух должно быть ~0,1/15 = 1/150.
Можно ли при азотной реакции горения совсем обойтись без топлива и почему?
1. Как только что выяснили, для самой азотной реакции топливо не нужно.
2. Для пуска существующих ДВС топливо нужно (в малом количестве); для пуска ДВС на азотном цикле, видимо, потребуется модернизировать (усилить) пусковые устройства, – тогда топливо для пуска будет не нужно.
3. Для создания плазмы слабую искру в существующих автомобилях дополняют легковоспламеняемым топливом. В азотном цикле воспламенение в цилиндре ДВС как такового вообще нет: нужна плазма (горячая или холодная), как раздробленное состояние воздуха. Это достигается, например, усиленной искрой или другим инициирующим возбуждением, которые описаны в /1/.
4. В азотном цикле топливо, как донор, для добавки электронов в топливовоздушную смесь не нужно, так как количество электронов достаточно для обеспечения всех атомов в плазме.
5. Топливо – главный «душитель» азотной реакции, вследствие нейтрализации его электронами всех избыточных положительно заряженных частиц в излучениях, необходимых для разрушения молекул азота.
6. Топливо усложняет конструкцию ДВС. Лучший карбюратор – это когда его нет и нет системы топливоподачи. А регулировка оборотов производится одной заслонкой на всасывание двигателя. Когда топлива нет, конструкция и управление двигателем – проще.
7. При азотной реакции в том же объеме цилиндров двигателя его мощность возрастает в 5...6 раз. Во столько же раз можно уменьшить расход воздуха или количество цилиндров, оставив мощность прежней. Исключается и расход топлива. Все это увеличивает экономический эффект.
8. Отсутствие на выходе ДВС вредных веществ и расхода топлива улучшает экологию при его эксплуатации по сравнению с существующими двигателями.
9. При азотной реакции нет необходимости менять конструкцию ДВС.
10. При азотной реакции нет необходимости совершенствовать ДВС, так как КПД не имеет особого значения, ибо энергия дается от воздуха, как доступного топлива, имеющегося без ущерба для природы в достаточном количестве.
Как показывают эти 10 причин отказа от топлива, оно не только не нужно, оно еще и вредно. Отсутствие же топлива делает двигатель предельно простым и надежным, мощным и экономичным.
Единый механизм взрыва.
Твердые взрывчатые вещества (ВВ).
В твердом веществе, в том числе, во взрывчатом веществе (ВВ), в результате инициирующего воздействия от детонатора первоначально в малом объеме вещества образуется локальная зона с высокими параметрами (температура, давление), в которой подведенной энергии достаточно, чтобы произошло разрушение вещества на отдельные молекулы и атомы в виде плазмы.
В каждой такой зоне из точки начала реакции (эпицентра взрыва) пойдет детонационная волна. За волной давления следует волна разрежения. На фронте волны молекулы разрушаются на атомы вследствие высоких динамических параметров, превышающих предел прочности молекулы, а не разрушенные – активируются. В зоне разрежения молекула еще активирована, то есть имеет высокую температуру и давление, поэтому встречая внезапный резкий сброс давления распадается на атомы за счет разности давлений внутри и вне ее.
В плазме освобождающиеся электроны связи становятся свободными электронами – генераторами энергии по алгоритму, описанному для процесса горения. Электрон вырывает из атома мелкую частицу – электрино; электрино отдает избыток своей кинетической энергии соседним атомам путем контактного (ударного) и неконтактного (электродинамического) взаимодействия с ними. Эта энергия, примерно, на семь порядков превышает энергию возбуждения взрыва, и является его основной энергией. Часть энергии идет на самоподдержание реакции взрыва в детонационной волне; часть энергии затрачивается на механический разгон среды и продуктов взрыва, на создание и поддержание ударной и тепловой волны; часть энергии, затраченная на разрушение молекул, вновь возвращается при рекомбинации атомов в продукты реакции взрыва; часть энергии теряется на смешение продуктов взрыва с окружающим воздухом и на его нагрев.
Все стадии взрыва в твердом ВВ: инициация, разогрев и локальная газификация вещества, разлет молекул и образование фронта детонационной волны с высокими параметрами и зоны разрежения – вакуума, разрушение молекул на атомы, их распад на элементарные частицы с выделением энергии, рекомбинация атомов в продукты взрыва – происходят единовременно, почти мгновенно, на фронте детонационной волны, которая распространяется от эпицентра взрыва со скоростью 6...7 км/с.
Следует сказать, что до настоящего времени, согласно специальной литературе по физике взрыва, механизм его осуществления и выделения энергии был неясен и вообще отсутствовал и не разрабатывался, что затрудняло понимание физической сущности взрыва.
Более того, в результате анализа этой литературы создалось впечатление, что авторы, особенно Зельдович Я.Б., старательно обходили вопросы разработки физического механизма, довольствуясь эмпирической обработкой экспериментальных данных, но, не затрагивая интересы физиков или классической физики, которая в том виде как есть, не могла дать ответ на вопрос. Теперь наличие сути механизма взрыва должно способствовать его пониманию, совершенствованию способов предотвращения несанкционированных взрывов и практике защиты от поражающих факторов взрыва.
Жидкие взрывчатые вещества.
В жидком веществе практически осуществляется тот же процесс локальных микровзрывов, что и в твердом веществе. Специфическим является то, что резкими колебаниями и сбросом давления, разгоном и растяжением жидкости создают нарушения ее сплошности. Проявляется это в возникновении и схлопывании пузырьков – режима, называемого кавитацией. Кавитация как режим предкипения жидкости возникает при соответствии температуры и давления параметрам насыщенного пара. Рост пузырька происходит постепенно, с затратой небольшой мощности. В то же время, схлопывание пузырька происходит почти мгновенно с выделением всей накопленной энергии в микроскопической зоне его расположения. Поэтому температура и давление возрастают на несколько порядков, что приводит к микровзрыву. Максимальные значения параметров: давление 1,46∙1023 атмосферы, температура 8,56∙107 К. А дальше все так же, как в твердом веществе: локальная газификация, распад молекул на атомы с освобождением электронов связи, инициация электронами – генераторами распада атомов на элементарные частицы с выделением энергии их связи в этих атомах; детонационная и ударная волны.
Процесс извлечения «избыточной» мощности на основе частичного атомного распада воды получен в теплогенераторах разного типа и описан в /1/. Нет препятствий для использования воды в качестве взрывчатого вещества. При этом, вследствие частичного распада и сохранения химических свойств, атомы вещества рекомбинируют в продукты реакции, образуя снова воду. Ввиду незначительного дефекта массы молекул воды он восстанавливается в природных условиях, чем обеспечивается экология, в том числе, отсутствие радиации.
10.4.3. Газообразные взрывчатые вещества
и объемно-детонирующие смеси.
Известно, что при наличии в атмосферном воздухе горючих газов, жидкостей в виде аэрозолей и твердых веществ в виде пыли, может произойти взрыв. Экспериментальные исследования дают некоторую картину концентраций, приводящих к взрыву (см. таблицу 10.2.) /48/.
В газообразном веществе, в том числе, в объемно-детонирующих смесях (ОДС), происходит каскадная инициация взрыва. На первом такте каким-либо образом, например, при аварии трубопровода или в результате взрыва распыляется в воздухе топливо (жидкое, твердое или газообразное). На втором такте, в распыленное в воздухе топливо, как газообразное ВВ в виде полусферического облака подрывается вторым инициирующим воздействием (искра, удар, взрыв, ЭМИ,...).
В газообразном веществе, в том числе, в объемно-детонирующих смесях (ОДС), происходит каскадная инициация взрыва. На первом такте каким-либо образом, например, при аварии трубопровода или в результате взрыва распыляется в воздухе топливо (жидкое, твердое или газообразное). На втором такте, в распыленное в воздухе топливо, как газообразное ВВ в виде полусферического облака подрывается вторым инициирующим воздействием (искра, удар, взрыв, ЭМИ,...).
Таблица 10.2.
Вещество | Мах плот-ность, при которой возможен взрыв, г/м3 | Мin температура зажигания, °С | Мах давление, МПа | Мах скорость роста давления, МПа/с | |
1. | Алюминий * (стружка) | 0,88 | |||
2. | Стеарат кальция | 0,67 | |||
3. | Целлюлоза | 0,81 | 55,2 | ||
4. | Уголь | 0,62 | 15,9 | ||
5. | Кофе (быстрорастворимый) | 0,44 | 3,8 | ||
6. | Пробка | 0,67 | 51,8 | ||
7. | Эпоксидный клей | 0,54 | 90,2 | ||
8. | Мука | 0,71 | 14,1 | ||
9. | Железо | 0,33 | 14,5 | ||
10. | Магний | 0,80 | 103,5 | ||
11. | Нейлон | 0,66 | 27,6 | ||
12. | Мыло | 0,54 | 19,4 | ||
13. | Сера | 0,54 | 32,4 | ||
14. | Титан | 0,59 | 75,9 | ||
15. | Пшеничная мука | 0,76 | 25,6 | ||
16. | Пшеничный крахмал | 0,69 | 44,9 | ||
17. | Древесина | нет данных | 0,62 | 39,3 |
* Это добавка всего 1 % электронов на 1 м3 воздуха.
Механизм взрыва газообразного ВВ такой же как твердого и жидкого ВВ, аналогичный описанному механизму горения топлива, если энергии возбуждения взрыва достаточно для распада не только молекул кислорода, но и азота, последний так же участвует во взрыве не как балласт, а как равноправный реагент. В газовом облаке взрыв начинается с дефлаграционного горения. Фронт горения, распространяясь сферически, разгоняется за счет самообеспечения энергией до скорости порядка 2 км/с, как правило, не превышающей скорости свободного движения молекул в газе. И тогда возникает детонационное горение и детонационная волна. В облаке диаметром менее 5 м фронт горения не успевает разогнаться до нужной скорости и детонация – взрыв не происходит, но облако выжигается: на этом основан один из методов защиты.
Усиление параметров плазмы для осуществления распада азота может быть достигнуто за счет увеличения энергоподвода во фронте взрыва добавками более энергичного топлива и взрывчатого вещества. Именно этим можно объяснить повышение параметров взрыва обычной ОДС с 2 до 40 МПа. Добавки дают локальные микрозоны плазмы с высокими параметрами, достаточными для разрушения молекул азота на атомы и их участие в процессе энерговыделения при взрыве. При этом собственных электронов связи достаточно для частичного распада азота и кислорода воздуха с повышенным энерговыделением, но без радиации. В качестве продуктов взрыва азота воздуха образуются преимущественно водяной пар, а также – мелкодисперсный графит; если не весь азот прореагировал, то – его остатки и углекислый газ. При избытке электронов в облаке ОДС за счет какого-либо постороннего источника азот и кислород воздуха будут испытывать более полный распад на элементарные частицы с выделением существенно большей (на несколько порядков) энергии взрыва.
Ядерный взрыв.
Рассмотрим ФПВР урана /2/. Почему уран – 238 не пригоден для ядерного горючего? Традиционный ответ: «потому что коэффициент размножения меньше единицы не обеспечивает реакцию выделения» – не объясняет физическую причину этого.
Превращение урана – 238 в уран – 235 происходит в результате частичного
ФПВР: U238 → U235 + Зnе +3пэ, где nе, nэ – число электронов и электрино в одном нуклоне (нейтроне) атома, в частности, урана. Отсюда следует, что три нуклона атома урана – 238 подверглись полному расщеплению электроном – генератором, в роли которого выступает свободный электрон. Электрон – генератор работает в кристаллической структуре урана, взаимодействуя с четырьмя атомами ближайшего окружения и находясь в их межатомном пространстве. Электрино в количестве Зпэ штук покидают место события со скоростью 1014...1016 м/с в виде γ – излучения, производя попутно частичное разрушение атомов. Такой ФПВР, охвативший четыре атома, расщепил 4 × 3 = 12 нейтронов с высвобождением 12 × nе = 36 свободных электронов.
Часть высвобождаемых электронов уходит в пространство вместе с γ –излучением, остальная (большая) часть захватывается положительными электрическими полями атомов вещества. Теперь уже уран – 235 отличается от урана – 238 не только атомной массой, но и наличием избыточных свободных неструктурных электронов, имеющих сравнительно слабое механическое крепление с атомами ввиду дебаланса электрических зарядов. Такой атом, образно говоря, находится на взводе: достаточно малейшего внешнего воздействия на него, чтобы один из его свободных электронов сорвался в межатомное пространство и начал новый акт ФПВР.
Теперь для начала ядерной реакции уран – 235 нужно скомпоновать в виде сферы критического диаметра и массы. В результате ФПВР в зоне реакции – геометрическом центре сферы формируется полость «выгоревшего» топлива. По мере развития реакции генерируемое γ – излучение беспрепятственно покидает не только пределы полости ядерного заряда, но и пределы объема тары ввиду прозрачности для него стенок корпуса. Число электронов возрастает в геометрической прогрессии, поскольку в этот период каждый электрон, реагируя с одним нейтроном, освобождает три структурных электрона, то есть коэффициент размножения равен трем, что достаточно для поддержания ФПВР. Высвобождающиеся электроны не в состоянии все покинуть полость заряда. Силы взаимного отталкивания электронов столь высоки, что возникает колоссальное давление (4,07∙1011 атм.), которое разрывает заряд и тару, и электроны вырываются наружу, расщепляя азот и кислород атмосферного воздуха. В этом случае, при избытке электронов, воздух становится дополнительным ядерным взрывчатым веществом, часть которого претерпевает полный распад на элементарные частицы, сопровождаемый всеми видами излучений (α, β, γ и нейтронного).
Только частичный распад воздуха в естественных условиях, без избытка электронов в плазме, позволяет избежать радиации и иметь нерадиоактивные продукты горения, в том числе, взрыва, как быстрого горения, например, в цилиндрах ДВС.
Следует отметить, что выгорает только 23% ядерного топлива, а остальная часть заряда разрывается на кусочки и впрессовывается в корпус. Происходит это потому, что в ФПВР участвуют только те электроны, которые находятся в контакте со стенкой полости заряда. Все остальные – отлучены от своего прямого назначения, так как им уже нечего расщеплять. Кристаллическая структура мешает ядерной реакции с достаточной скоростью распространяться от центра заряда в радиальном направлении, чтобы беспрерывно подключались к работе новые свободные электроны. За пределами выгоревшей полости для продолжения распада урана вещество должно находиться в жидком или газообразном состоянии. Этому условию отвечает, в частности, водородная бомба, а также облако объемно-детонирующей смеси.
Термоядерный взрыв.
Итак, в водородной бомбе при термоядерном взрыве выгорает 100% смеси дейтерия и трития. Но в ней, как и во всех энергетических процессах, идет их расщепление, а не синтез гелия. Именно поэтому нет никакого прогресса в освоении термоядерного синтеза для получения электроэнергии, что энергетические устройства проектируются по ошибочной теории.
Полученные выше результаты можно отнести к урановому заряду водородной бомбы. Итак, расщепление уранового заряда прервалось и электронный газ вырвался на новый оперативный простор. Если термоядерным горючим служила смесь дейтерия и трития, то можно сказать, что все 2∙1028 электронов равномерно распределились в объеме водородной бомбы и каждый электрон стал началом цепной реакции с коэффициентом размножения равным трем. Повторяется тот же процесс, что и в центре уранового заряда, но с теми отличиями, что здесь нет лимитирующего фактора в распространении ФПВР на всю массу термоядерного горючего. Именно поэтому выгорает вся масса ядерного горючего – все 100%. По ходу развития процесса ФПВР электрино покидают объем бомбы в виде γ –излучения, а все высвобождающиеся электроны накапливаются в нем. И опять электронный газ создает высокое напряжение (давление) по всему объему бомбы, разрывает корпус и выходит на новый оперативный простор. При этом все накопленное количество электронов приступает к расщеплению азота и кислорода воздуха. ФПВР в атмосферном воздухе гаснет, в основном, за счет связывания электронов в отрицательно заряженные ионы воздуха, значительная часть которых становится радиоактивной.
Интересно почувствовать масштаб дополнительной мощности от взрыва воздуха при термоядерном взрыве. По воспоминаниям Славского из газет известно, что при взрыве водородной бомбы мощностью 58 Мт по тротиловому эквиваленту на Новой Земле в радиусе 20 км испарился лед 3-х метровой толщины. После несложного подсчета видно, что только на испарение этого льда затрачено энергии в 50 раз больше, чем указанная мощность бомбы. Ясно, что эта цифра оценочная и она многое не учитывает; в открытой литературе встречаются данные о том, что при разных термоядерных взрывах дополнительная энергия участвующего во взрыве воздуха на 2...3 порядка выше расчетной мощности термоядерной бомбы.
Что касается синтеза атомов и молекул, то действительно при этом выделяется энергия. Однако, она на 20 порядков меньше, чем энергия распада вещества той же массы на элементарные частицы и обусловлена частичным распадом атомов при их сближении, а не синтезом. Тогда электроны – «склейщики» молекулы за краткий миг успевают «раздеть» атомы, сняв с них несколько электрино с выделением энергии, которую и считают энергией синтеза. Поэтому и теоретически и практически энергия выделяется только при распаде вещества, как аккумулятора энергии, на элементарные частицы.