Распределение учителей средних школ района
По стажу работы
Стаж работы, лет хi | Число учителей в % к итогу fi | xi fi | |||
-2 | |||||
-1 | |||||
2. | |||||
Итого | - |
Для целей сравнения колеблемости различных признаков в одной и той же совокупности или же при сравнении колеблемости одного и того же признака в нескольких совокупностях вычисляются относительные показатели вариации. Базой дли сравнения служит средняя арифметическая. Эти показатели вычисляются как отношение размаха, или среднего линейного отклонения, или среднего квадратического отклонения к средней арифметической.Чаще всего они выражаются в процентах и характеризуют не только сравнительную оценку вариации, но и дают характеристику однородности совокупности. Совокупности считается однородной, если коэффициент вариации не превышает 33% (для распределений, близких к нормальному). Различают следующие относительные показатели вариации (V):
Коэффициент осцилляции:
Линейный коэффициент вариации:
Коэффициент вариации:
ПРАВИЛО СЛОЖЕНИЯ ДИСПЕРСИЙ. Если данные представлены в виде аналитической группировки, то можно вычислитьдисперсию общую, межгрупповую и внутригрупповую.
Общая дисперсия измеряет вариацию признака во всей совокупности под влиянием всех факторов, обусловливающих эту вариацию:
Межгрупповая дисперсия характеризует систематическую вариацию, т. е. различия в величине изучаемого признака, возникающие под влиянием признака-фактора, положенного в основание группировки. Она рассчитывается по формуле:
где i, и ni, - соответственно средние и численности по отдельным группам:
- общая средняя.
Внутригрупповая дисперсия отражает случайную вариацию, т. е. часть вариации, происходящую под влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Она исчисляется следующим образом:
Средняя из внутригрупповых дисперсий
Существует закон, связывающий три вида дисперсий. Общая дисперсия равна сумме средней из внутригрупповых и межгрупповых дисперсий:
Данное соотношение называютправилом сложения дисперсий. Согласно этому правилу общая дисперсия, возникающая под влиянием всех факторов, равна сумме дисперсий, возникающих под влиянием всех прочих факторов, и дисперсии, возникающей за счет группировочного признака.
Зная любые два вида дисперсий, можно определить или проверить правильность расчета третьего вида.
Пример. Определим групповые дисперсии, среднюю из групповых дисперсий, межгрупповую дисперсию, общую дисперсию по данным табл. 2.
Таблица 2