Рычаг, блок и наклонная плоскость 15 страница
В созданном Эдисоном аппарате телефон и микрофон включались в две отдельные цепи. Источник тока, микрофон и первичная обмотка трансформатора соединены здесь в одну цепь, другая катушка и телефон‑приемник — в другую. Принцип работы этого телефона понятен: вследствие колебания мембраны сопротивление в микрофоне постоянно менялось, отчего постоянный ток батареи преобразовывался в пульсирующий. Этот ток подавался на первичную обмотку трансформатора. Во вторичной обмотке индуцировались такие же по форме токи, но более высокого напряжения. Они без труда преодолевали сопротивление проводов и могли передаваться на значительные расстояния. Усовершенствованный таким образом телефон вскоре получил широкое распространение.
В первое время аппараты связывались между собой попарно. Они не имели коммутаторов и звонков. Для вызова абонента к аппарату просто стучали карандашом по мембране. Впоследствии Эдисоном были введены электрические звонки. В 1877 году появилась первая центральная телефонная станция в Нью‑Хейвене (США). Порядок соединения здесь был таков. Абонент, желавший говорить с каким‑либо лицом или учреждением, в абонентной книжке разыскивал нужный номер и звонил на центральную станцию. Когда последняя отвечала, он сообщал нужный ему номер, и, если этот номер был не занят, оператор соединял его с требуемым лицом с помощью специальных штекеров и сообщал ему, что соединение готово. После этого абонент обращался уже к соединенному с ним лицу. По окончании разговора их разъединяли.
Современники очень быстро оценили удобства, которые давал телефон. Вскоре телефонные станции были построены во всех крупных городах. Одновременно рос спрос на телефонные аппараты. В 1879 году Белл создал свою фирму по производству телефонов, превратившуюся вскоре в мощный концерн. В течение десяти лет только в США было установлено свыше 100 тысяч телефонных аппаратов, а через 25 лет их уже насчитывалось более миллиона. Затем эта цифра увеличилась еще на порядок. Белл прожил долгую жизнь и мог наблюдать за распространением телефонии по всему свету. Он умер в 1922 году, и память его почтили своеобразной минутой молчания: когда гроб с телом изобретателя опускали в могилу, все телефонные разговоры прекратились. Пишут, что в США в эту минуту молчало более 13 миллионов телефонов.
ЭЛЕКТРИЧЕСКАЯ ЛАМПОЧКА
В последние десятилетия XIX века в жизнь многих европейских городов вошло электрическое освещение. Появившись сначала на улицах и площадях, оно очень скоро проникло в каждый дом, в каждую квартиру и сделалось неотъемлемой частью жизни каждого цивилизованного человека. Это было одно из важнейших событий в истории техники, имевшее огромные и многообразные последствия. Бурное развитие электрического освещения привело к массовой электрификации, перевороту в энергетике и крупным сдвигам в промышленности. Однако всего этого могло и не случиться, если бы усилиями многих изобретателей не было создано такое обычное и привычное для нас устройство, как электрическая лампочка. В числе величайших открытий человеческой истории ей, несомненно, принадлежит одно из самых почетных мест.
В XIX веке получили распространение два типа электрических ламп: лампы накаливания и дуговые. Дуговые лампочки появились немного раньше. Свечение их основано на таком интересном явлении, как вольтова дуга. Если взять две проволоки, подключить их к достаточно сильному источнику тока, соединить, а затем раздвинуть на расстояние нескольких миллиметров, то между концами проводников образуется нечто вроде пламени с ярким светом. Явление будет красивее и ярче, если вместо металлических проводов взять два заостренных угольных стержня. При достаточно большом напряжении между ними образуется свет ослепительной силы.
Впервые явление вольтовой дуги наблюдал в 1803 году русский ученый Василий Петров. В 1810 году то же открытие сделал английский физик Деви. Оба они получили вольтову дугу, пользуясь большой батареей элементов, между концами стерженьков из древесного угля. И тот, и другой писали, что вольтова дуга может использоваться в целях освещения. Но прежде надо было найти более подходящий материал для электродов, поскольку стержни из древесного угля сгорали за несколько минут и были малопригодны для практического использования. Дуговые лампы имели и другое неудобство — по мере выгорания электродов надо было постоянно подвигать их навстречу друг другу. Как только расстояние между ними превышало некий допустимый минимум, свет лампы становился неровным, она начинала мерцать и гасла.
Первую дуговую лампу с ручным регулированием длины дуги сконструировал в 1844 году французский физик Фуко. Древесный уголь он заменил палочками из твердого кокса. В 1848 году он впервые применил дуговую лампу для освещения одной из парижских площадей. Это был, короткий и весьма дорогой опыт, так как источником электричества служила мощная батарея. Затем были придуманы различные приспособления, управляемые часовым механизмом, которые автоматически сдвигали электроды по мере их сгорания.
Понятно, что с точки зрения практического использования желательно было иметь лампу, не осложненную дополнительными механизмами. Но можно ли было обойтись без них? Оказалось, что да. Если поставить два уголька не друг против друга, а параллельно, притом так, чтобы дуга могла образовываться только между двумя их концами, то при этом устройстве расстояние между концами углей всегда сохраняется неизменным. Конструкция такой лампы кажется очень простой, однако создание ее потребовало большой изобретательности. Она была придумана в 1876 году русским электротехником Яблочковым, который работал в Париже в мастерской академика Бреге.
Свеча Яблочкова состояла из двух стержней, изготовленных из плотного роторного угля, расположенных параллельно и разделенных гипсовой пластинкой. Последняя играла двоякую роль, так как служила и для скрепления углей между собой и для их изоляции, позволяя вольтовой дуге образовываться лишь между верхними концами углей. По мере того как угли сверху обгорали, гипсовая пластинка плавилась и испарялась, так что кончики углей всегда на несколько миллиметров выступали над пластинкой.
Свечи Яблочкова привлекли к себе всеобщее внимание и наделали много шуму. В 1877 году с их помощью было впервые устроено уличное электричество на Avenue de L'Opera в Париже. Всемирная выставка, открывшаяся в следующем году, дала возможность многим электротехникам познакомиться с этим замечательным изобретением. Под названием «русский свет» свечи Яблочкова использовались позже для уличного освещения во многих городах мира. Эти лампы любопытны еще и тем, что требовали для себя исключительно переменного тока, так как скорость сгорания положительного и отрицательного электродов в них была неодинаковой и при постоянном токе надо было делать положительный электрод толще. Именно для Яблочкова Грамм изготовил свой первый генератор переменного тока. Но наряду с достоинствами свечи Яблочкова имели свои недостатки. Главное неудобство заключалось в том, что угли в них сгорали очень быстро — свеча средней величины светила не более двух часов.
Этот недостаток, впрочем, был присущ и многим другим дуговым лампам. Не раз у изобретателей являлась мысль заключить вольтову дугу в лишенную кислорода атмосферу. Ведь благодаря этому лампа могла бы гореть значительно дольше. Долгое время эти попытки не удавались, так как пытались выкачать воздух целиком из всей лампы. Американец Джандус первый придумал помещать под купол не всю лампу, а только ее электроды. При возникновении вольтовой дуги кислород, заключенный в сосуде, быстро вступал в реакцию с раскаленным углеродом, так что вскоре внутри сосуда образовывалась нейтральная атмосфера. Хотя кислород и продолжал поступать через зазоры, влияние его сильно ослаблялось, и такая лампа могла непрерывно гореть около 200 часов.
Но даже в таком усовершенствованном виде дуговые лампы не могли получить достаточно широкого распространения. Вольтова дуга представляет собой очень сильный источник света. Яркость ее горения невозможно уменьшить ниже некоторого предела. Поэтому дуговые лампы использовались для освещения больших залов, вокзалов или площадей. Но они были совершенно непригодны для применения в маленьких жилых или рабочих помещениях.
Намного удобнее в этом смысле были лампочки накаливания. Устройство их всем известно: электрический ток, проходя через тонкую нить, раскаляет ее до высокой температуры, благодаря чему она начинает ярко светиться. Еще в 1820 году французский ученый Деларю изготовил первую такую лампу, в которой накаливаемым телом служила платиновая проволока. После этого в течение полувека лампы накаливания почти не использовались, поскольку не могли найти подходящего материала для нити. Поначалу наиболее удобным казался уголь. В 1873 году русский электротехник Лодыгин сделал лампочку с нитью из роторного угля. Он же первый начал откачивать из баллона воздух. В конце концов ему удалось создать первую лампочку накаливания, получившую некоторое практическое применение, но она оставалась еще очень несовершенной. В 1878 году американские электротехники Сойер и Ман нашли способ изготавливать маленькие угольные дуги небольшого сечения путем обугливания картона в графитовом порошке. Эти дуги заключали в стеклянные колпачки. Однако и эти лампочки были очень недолговечны.
В 1879 году за усовершенствование электрической лампочки взялся знаменитый американский изобретатель Эдисон. Он понимал: для того, чтобы лампочка светила ярко и долго и имела ровный немигающий свет, необходимо, во‑первых, найти подходящий материал для нити, и, во‑вторых, научиться создавать в баллоне сильно разреженное пространство. Было проделано множество экспериментов с различными материалами, которые ставились со свойственным для Эдисона размахом. Подсчитано, что его помощники опробовали не менее 6000 различных веществ и соединений, при этом на опыты было израсходовано свыше 100 тысяч долларов. Сначала Эдисон заменил ломкий бумажный уголек более прочным, приготовленным из угля, потом стал делать опыты с различными металлами и наконец остановился на нити из обугленных бамбуковых волокон. В том же году в присутствии трех тысяч человек Эдисон публично демонстрировал свои электрические лампочки, осветив ими свой дом, лабораторию и несколько прилегающих улиц. Это была первая лампочка с продолжительным сроком службы, пригодная для массового производства. Но поскольку изготовление нитей из бамбука оказалось достаточно дорогим, Эдисон разработал новый способ выделки их из специальным образом обработанных волокон хлопка. Сначала хлопок помещали в горячий хлорно‑цинковый раствор, где он постепенно растворялся. Полученную жидкость сгущали с помощью насоса до тестообразного состояния и выдавливали через тонкую трубку в сосуд со спиртом. Здесь она превращалась в тонкую нить и наматывалась на барабан. Полученную нить путем нескольких промежуточных операций освобождали от хлорно‑цинкового раствора, сушили, разрезали, заключали в v‑образные формы и обугливали в печи без доступа воздуха. Затем на нити напыляли тонкий слой угля. Для этого их помещали под колпак, заполненный светильным газом, и пропускали через них ток. Под действием тока газ разлагался, и на нити осаждался тонкий слой углерода. После всех этих сложных операций нить была готова для употребления.
Процесс изготовления лампочки тоже был очень сложным. Нить помещали в стеклянный колпачок между двумя платиновыми электродами, вплавленными в стекло (дорогой платиной приходилось пользоваться потому, что она имела одинаковый со стеклом коэффициент теплового расширения, что было очень важно для создания герметичности). Наконец, с помощью ртутного насоса из лампочки выкачивали воздух, так что в ней оставалось не более одной миллиардной того воздуха, который содержался в ней при нормальном давлении. Когда выкачивание заканчивалось, лампочку запаивали и насаживали на цоколь с контактами для вкручивания в патрон (и патрон, и цоколь, а также многие другие элементы электрического освещения, сохранившиеся без изменений до наших дней — выключатели, предохранители, электрические счетчики и многое другое — были также изобретены Эдисоном). Средняя долговечность лампочки Эдисона составляла 800‑1000 часов непрерывного горения.
Почти тридцать лет лампочки изготавливались описанным выше способом, но будущее было за лампочками с металлической нитью. Еще в 1890 году Лодыгин придумал заменить угольную нить металлической проволокой из тугоплавкого вольфрама, имевшей температуру накала 3385 градусов. Однако промышленное изготовление таких лампочек началось только в XX веке.
ГИДРОТУРБИНА
В истории человечества водяные двигатели всегда играли особую роль. На протяжении многих веков различный водяные машины были главным источником энергии в производстве. Затем развитие тепловых (а позже электрических) двигателей сильно сузило сферу их применения. Однако везде, где имелись дешевые гидроресурсы (ручей с быстрым течением, водопад или порожистая река), водяной двигатель мог оказаться предпочтительнее всех других, поскольку был очень прост по своей конструкции, не требовал топлива и имел сравнительно высокий КПД. После того как в первой половине XIX века была изобретена водяная турбина с очень высоким КПД, гидроэнергетика пережила как бы второе рождение. С началом электрификации по всему миру развернулось строительство гидроэлектростанций, на которых электрогенераторы получали свой привод от мощных гидротурбин различных конструкций. И в наше время на долю гидротурбин приходится немалая часть мирового производства электроэнергии. Поэтому это замечательное устройство по праву входит в число самых великих изобретений.
Водяная турбина развилась из водяного колеса, и прежде чем говорить о ее устройстве, следует сказать несколько слов о водяных колесах. Как уже отмечалось, первые водяные колеса стали использоваться в древности. По конструкции они делились на нижнебойные (или подливные) и верхнебойные (или наливные).
Нижнебойные колеса были наиболее простым типом водяного двигателя. Они не требовали для себя строительства каналов или плотин, но в то же время имели самый низкий КПД, так как их работа основывалась на достаточно невыгодном принципе. Этот принцип заключался в том, что подтекающая под колеса вода ударяла в лопатки, заставляя их вращаться. Таким образом, в подливных колесах использовалась только сила напора воды. Более рациональны с энергетической точки зрения были наливные колеса, в которых использовался еще и вес падающей воды.
Устройство наливного колеса также было очень просто. По ободу большого колеса или барабана приделывался ряд ковшей. Вода сверху из желоба наливалась в верхний ковш. Наполненный водой ковш становился тяжелее, опускался вниз и тянул за собой весь обод. Колесо начинало вращаться. На место опускающегося колеса становился следующий ковш. Он тоже наполнялся непрерывно текущей водой и начинал опускаться. На его место приходил третий, потом четвертый и так далее. Когда ковши доходили до нижней точки обода, вода из них выливалась. При прочих равных условиях мощность верхнебойных колес была выше, чем у нижнебойных, но зато эти колеса имели большие габариты и невысокую скорость вращения. Кроме того, для их эффективной работы требовалось создавать значительный перепад воды, то есть строить каналы, плотины и прочие дорогостоящие сооружения.
Любое водяное колесо насаживалось на вал, который вращался вместе с колесом, а от него вращение передавалось дальше к той машине, которую хотели привести в действие. В древности и средневековье такие двигатели широко использовали в самых разных отраслях производства, где с их помощью приводили в движение молоты, воздуходувные мехи, насосы, ткацкие машины и другие механизмы.
Может показаться, что за многовековую историю существования водяных колес механики узнали о них все. Да и что можно было придумать нового в этой старой как мир конструкции? Однако оказалось, что можно. В 1750 году венгр Сегнер, работавший в Геттингенском университете, выдвинул совершенно новую идею водяного двигателя, в котором наряду с напором и весом использовалась еще и сила реакции, создаваемая потоком воды.
Вода поступала сверху в сосуд, соединенный с осью, внизу которого располагались крестообразные трубки с загнутыми в одну сторону концами. Вода вытекала через них, и получавшаяся при этом сила реакции действовала во всех четырех трубках в одну и ту же сторону, приводя во вращение все колесо. Это была чрезвычайно остроумная находка, не получившая, впрочем, в этом виде никакого практического применения, но возбудившая к себе живейший интерес некоторых математиков и инженеров.
Великий немецкий математик Эйлер одним из первых откликнулся на эту новинку, посвятив исследованию колеса Сегнера несколько своих работ. Прежде всего, Эйлер указал на недостатки в конструкции Сегнера, отметив при этом, что невысокий КПД колеса был следствием нерациональных потерь энергии. Далее он писал, что эти потери могут быть значительно снижены, если идея нового двигателя получит более полное воплощение. Значительные потери происходили, прежде всего, при входе воды в колесо из‑за резкого изменения направления и скорости течения воды (энергия здесь расходовалась на удар). Но их можно было уменьшить, если подводить воду к колесу в направлении вращения со скоростью этого вращения. На выходе также имелись потери, так как часть энергии уносилась с выходной скоростью воды. В идеале вода должна отдавать колесу всю свою скорость. Для этого Эйлер предлагал заменить горизонтальные водовыпускные трубки трубками криволинейной формы, идущими сверху вниз. Тогда уже не было нужды делать отверстия для выпуска воды сбоку, так как можно было просто оставлять открытым нижний конец замкнутой трубки. Эйлер предсказал, что в будущем гидравлические машины этого нового типа (собственно, речь здесь шла о гидравлической турбине, но самого этого названия еще не было в употреблении) будут иметь две части: неподвижный направляющий аппарат, по прохождению через который вода будет поступать в нижнее вращающееся колесо, являющееся рабочим органом машины. Несмотря на высказанные замечания, Эйлер очень высоко оценил изобретение Сегнера и прозорливо указал, что тот открыл новый путь развития гидравлических двигателей, которому суждено большое будущее.
Однако и колесо Сегнера, и работы Эйлера несколько опередили свое время. Следующие семьдесят лет никто не пытался усовершенствовать колесо Сегнера в соответствии с замечаниями Эйлера. Интерес к ним в первой четверти XIX века возродили работы французского математика Понселе, который предложил особый вид подливных колес новой конструкции. КПД колеса Понселе достигало 70%, что было совершенно недостижимо для других типов водяных двигателей. Секрет успеха заключался в том, что лопаткам колеса была придана особая полукруглая форма, так что подводимая вода поступала на них в направлении их кривизны, проходила некоторое расстояние вверх по лопатке, а затем, опускаясь, выходила наружу. При таких условиях совершенно устранялся удар воды о лопатки при входе, на который обычно терялась значительная часть энергии водяной струи. Изобретение Понселе стало важным шагом на пути к водяной турбине. Для того чтобы этот путь был пройден до конца, недоставало второго элемента турбины, описанного Эйлером — направляющего аппарата.
Впервые направляющий аппарат к водяному колесу применил профессор Бюрден в 1827 году. Он же первый назвал свою машину турбиной (от латинского turbo — быстрое вращение), после чего это определение вошло в обиход. В 1832 году первую практически применимую гидротурбину создал французский инженер Фурнейрон.
Его турбина состояла из двух концентрических, лежащих друг против друга колес: внутреннего, неподвижного K, представлявшего из себя направляющий аппарат, и внешнего с изогнутыми лопатками a, которое и было рабочим турбинным колесом. Вода поступала в турбину сверху через трубу, обхватывавшую вал турбины, и попадала на лопатки направляющего аппарата. Эти лопатки принуждали воду двигаться по кривой линии, вследствие чего она втекала в горизонтальном направлении в лопатки турбинного колеса, без удара, по всей его внутренней окружности, отдавая последнему всю свою энергию, а затем равномерно стекала по его внутренней окружности. Вновь поступающая и отработанная вода нигде не смешивались между собой. Турбинное колесо было накрепко соединено с вертикальным валом D, через который передавалось движение.
КПД турбины Фурнейрона достигал 80%. Созданная им конструкция имела громадное значение для дальнейшей истории турбостроения. Слух об этом удивительном изобретении быстро распространился по всей Европе. Специалисты‑инженеры из многих стран в течение нескольких лет приезжали в глухое местечко Шварцвальда, чтобы осматривать работавшую там турбину Фурнейрона как великую достопримечательность. Вскоре турбины стали строить по всему миру.
Переход к турбинам стал революционным переворотом в истории гидравлических двигателей. В чем же заключалось их преимущество перед старым водяным колесом? В приведенном выше кратком описании турбины Фурнейрона трудно увидеть колесо Сегнера. Между тем она основана на том же принципе использования реактивного движения водяной струи (отчего этот тип турбин и получил позже название реактивных). Просто Фурнейрон внимательно учел все замечания Эйлера и использовал свой собственный опыт инженера‑гидравлика. Турбина Фурнейрона отличалась от водяного колеса несколькими принципиальными моментами. В водяном колесе вода входила и выходила в одном и том же месте. Из‑за этого как скорость, так и направление движения воды в лопатке колеса были различны в разные моменты времени — колесо как бы затрачивало изрядную часть своей полезной мощности на постоянное преодоление сопротивления струи. В турбине Фурнейрона вода из направляющего аппарата входила на одну кромку лопатки колеса, проходила по лопатке и стекала с другой ее стороны. Вследствие этого в турбине вода не останавливалась, не меняла направления своего течения на обратное, а от входных до выходных кромок текла непрерывно. В каждой точке лопаток скорость ее была одинакова по направлению и отличалась только по величине. В результате скорость вращения турбины теоретически зависела только от скорости воды, и поэтому турбина могла вращаться в несколько десятков раз быстрее обычного водяного колеса. Другое выгодное отличие турбины заключалось в том, что вода одновременно проходила по всем лопаткам колеса, а в водяном колесе — только через некоторые. В результате, энергия водяной струи использовалась в турбине гораздо полнее, чем в водяном колесе, а ее габариты при той же мощности были в несколько раз меньше.
В последующие годы выработалось несколько основных видов гидротурбин. Не вдаваясь здесь в подробности, отметим, что все турбины XIX века можно условно разделить на два основных типа: реактивные и струйные. Реактивная турбина, как уже говорилось, представляла собой усовершенствованное колесо Сегнера. Она имела турбинное колесо, насаженное на вал, с особым образом искривленными лопатками. Это колесо заключало внутри себя или было окружено направляющим аппаратом. Последний представлял из себя неподвижное колесо с направляющими лопатками. Вода устремлялась вниз через направляющий аппарат и турбинное колесо, причем лопатки первого направляли воду на лопатки второго. При выливании вода давила на лопатки и вращала колесо. От вала вращение передавалось дальше к какому‑нибудь устройству (например, электрогенератору). Реактивные турбины оказались очень удобны там, где напор воды невелик, но есть возможность создать перепад в 10‑15 м. Они получили в XX веке очень широкое распространение.
Другим распространенным типом турбин были струйные. Их принципиальное устройство заключалось в том, что струя воды под сильным напором ударяла в лопатки колеса и этим заставляла его вращаться. Сходство струйной турбины с нижнебойным колесом очень велико. Прообразы таких турбин появились еще в средние века, как это можно заключить из некоторых изображений того времени.
В 1884 году американский инженер Пельтон значительно усовершенствовал струйную турбину, создав новую конструкцию рабочего колеса. В этом колесе гладкие лопатки прежней струйной турбины были заменены особенными им изобретенными, имеющими вид двух соединенных вместе ложек. Таким образом, лопатки получились не плоскими, а вогнутыми, с острым ребром посередине. При таком устройстве лопаток работа воды почти целиком шла на вращение колеса и только очень малая ее часть терялась бесполезно.
Вода к турбине Пельтона поступала по трубе, идущей от запруды или водопада. Там, где воды было много, труба делалась толстой, а где воды оказывалось меньше, она была тоньше. На конце трубы имелся наконечник, или сопло, из которого вода вырывалась сильной струей. Струя попадала в ложкообразные лопатки колеса, острое ребро лопатки резало ее пополам, вода толкала лопатки вперед, и турбинное колесо начинало вращаться. Отработанная вода стекала вниз в отводную трубу. Колесо с лопатками и соплом прикрывалось сверху кожухом из чугуна или железа. При сильном напоре колесо Пельтона вращалось с огромной скоростью, делая до 1000 оборотов в минуту. Оно было удобно там, где имелась возможность создать сильный напор воды. КПД турбины Пельтона был очень высок и приближался к 85%, поэтому она и получила широчайшее распространение.
После того как в 80‑е годы XIX века была разработана система передачи электрического тока на большие расстояния и появилась возможность сосредоточить производство электроэнергии на «фабриках электричества» — электростанциях, началась новая эпоха в истории турбостроения. В соединении с электрогенератором турбина стала тем могущественным инструментом, с помощью которого человек поставил себе на службу огромную силу, скрытую в реках и водопадах.
ПУЛЕМЕТ
В истории военной техники можно насчитать несколько эпохальных изобретений, к числу которых, несомненно, относится и пулемет. Точно так же, как первая пушка открыла эпоху огнестрельного оружия, а первая винтовка — эпоху нарезного, создание пулемета ознаменовало собой начало эпохи скорострельного автоматического оружия.
Мысль о таком оружии, которое позволяло бы в кратчайший промежуток времени выпустить наибольшее количество пуль, появилась очень давно. Уже в начале XVI века существовали укрепленные поперечно на бревне ряды заряженных стволов, через затравки которых была просыпана пороховая дорожка. При воспламенении пороха получался залп из всех стволов. Об использовании подобных установок (ребодеконов) в Испании сообщается около 1512 года. Потом возникла мысль укреплять отдельные стволы на вращающемся граненом вале. Это оружие называлось «органом», или картечницей. Орган мог иметь на себе до нескольких десятков стволов, каждый из которых снабжался своим кремневым замком и спусковым механизмом. Действовало такое приспособление очень просто: когда все стволы были заряжены и замки взведены, вал приводили во вращение посредством рукоятки, укрепленной на его оси. При этом замки, проходя мимо неподвижного шпенька (небольшого стержня), укрепленного на оси орудия, спускались и производили выстрел. Частота огня зависела от частоты вращения. Впрочем, подобное оружие не имело широкого распространения. Оно стало более удобным только после того, как появились патроны в металлической гильзе.
В 1860— 1862 годах американец Гатлинг создал несколько образцов довольно совершенных картечниц, которые были непосредственными предшественницами пулемета. В 1861 году такая картечница была принята на вооружение армии США, а потом и многих других армий.
Вокруг центрального вала АБ были прикреплены шесть или десять ружейных стволов, образующих с ним как бы цилиндр; стволы были набраны в особой железной раме ВГДЕ, имевшей цапфы Ж и З для помещения рамы на колесный лафет. Вал АБ и окружающие его стволы были пропущены сквозь отверстия двух железных дисков К и Л. Передний конец вала Б был вставлен в переднюю стенку рамы, а задний конец А проходил через пустотелый чугунный цилиндр М и соединялся с зубчатыми колесами НН. Через посредство рукояти ОО вал АБ со стволами приводился во вращательное движение. Для заряжания картечницы на валу АБ непосредственно за обрезами стволов имелся приемный цилиндр П с желобами, расположенными на боковой поверхности на продолжении каждого ствола: в них помещались патроны. Над приемным цилиндром была прикреплена к раме на шарнире крышка Р с воронкой С, через которую можно было всыпать патроны из особой железной пачки. Скрытый в цилиндре М механизм был устроен таким образом, что если один человек вращал посредством рукояти ОО систему стволов, а другой высыпал патроны в воронку С, то производились последовательное заряжание и стрельба из каждого ствола одного за другим; патронные гильзы при этом последовательно выбрасывались из ствола и падали вниз.
Осуществлялось это следующим образом. К приемному цилиндру П прилегал надетый на том же зубчатом валу замочный цилиндр АБ с желобами, которые были продолжением желобов первого цилиндра. Оба цилиндра и стволы составляли одно целое и приводились в общее вращение рукояткой О. В каждом желобе замочного цилиндра помещался затвор, представляющий собой трубку ВГ. Внутри трубки располагался ударник с головкою Д и ударной шпилькой Е; ударник мог продольно двигаться в затворе, причем для головки Д была разделана вдоль верхней стенки затвора щель; вокруг ударника была обвита пружина, сжимавшаяся между головкой ударника и выступом в затворе Ж. В передней части затвора был укреплен посредством шпильки экстрактор (устройство для извлечения стреляной гильзы) З с зацепом И и зубцом К. При вращении всей этой системы выступы затворов Л скользили по наклонному нарезу МММ на внутренней поверхности неподвижной оболочки, покрывавшей механизм. Вследствие этого затворы постепенно выдвигались в желоба приемного цилиндра, подталкивая патроны в стволы. В каждый момент вращения только один ствол был заперт затвором, то есть подготовлен к выстрелу. Головки ударников Д скользили по выступу НН, расположенному на внутренней поверхности неподвижной оболочки, причем по мере выдвижения затвора вперед спиральные пружины сжимались. В тот момент, когда затвор запирал ствол, головка ударника освобождалась от выступа НН и ударная пружина воспламеняла капсюль патрона. При дальнейшем вращении каждый затвор вследствие обратного наклона нареза МММ отодвигался назад, причем экстрактор вытягивал пустую гильзу, которая падала вниз. При весе около 250 кг картечница могла делать до 600 выстрелов в минуту. Она была довольно капризным оружием, и управляться с ней было очень непросто. К тому же вращение рукоятки оказалось весьма утомительным занятием. Картечница использовалась в некоторых войнах (гражданской войне в США, франко‑прусской и русско‑турецкой), но нигде не смогла зарекомендовать себя с хорошей стороны. В истории техники она интересна тем, что некоторые ее механизмы были использованы потом изобретателями пулеметов. Однако назвать картечницу автоматическим оружием в современном смысле этого слова еще нельзя.