Структурная схема цифрового ствола РРЛ

Рисунок 4 – Структурная схема цифрового ствола

Точка А – точка стыка соединительной линии и радиорелейной линии. В ней жестко нормируются параметры приходящего сигнала:

- тип кода;

- скорость передачи;

- затухание соединительной линии;

- параметры одиночного импульса;

- джиттер.

Линейный цифровой сигнал от АТС в коде HDB-3 по соединительной линии подается на регенератор (Р 1), где идет восстановление временных и амплитудных характеристик сигнала. Далее сигнал поступает на преобразователь кода 1 (ПК 1), который выполняет две функции:

- из сигнала в коде HDB-3 удаляются вставки (обеспечивающие повышение устойчивости работы тактовой синхронизации);

- преобразует трехуровневый сигнал в двухуровневый однополярный.

В скремблере (Скр) устраняются длинные серии одноименных импульсов, которые приводят к сбою системы тактовой синхронизации (содержит генератор псевдослучайной последовательности).

Системы спутниковой связи

Геостационарная орбита (ГО) — это экваториальная круговая орбита, для которой Н3=35786 км. Спутник, движущийся по этой орбите, называют геостационарным. Он вращается с той же угловой скоростью, что и Земля, и поэтому наблюдателю на Земле кажется неподвижным. Точку на земной поверхности, над которой ИСЗ находится в зените, называют подспутниковой. Для геостационарного спутника траектория подспутниковой точки вырождается в точку на экваторе. Долгота этой точки определяет положение геостационарного ИСЗ. Связь через такой ИСЗ можно поддерживать с помощью неподвижных антенн ЗС. На самом деле часто приходится принимать во внимание сравнительно небольшие колебания положения ИСЗ, вызванные перечисленными выше возмущающими факторами. Под их влиянием подспутниковая точка начинает совершать колебания с суточной периодичностью. Через некоторое время траектория движения подспутниковой точки за сутки приобретает вид «восьмерки», вытянутой в направлении север-юг, с центром на экваторе. Через год размах этой восьмерки составит около ±10. Из-за этого приходится периодически корректировать положение спутника на орбите.

Геостационарные спутники позволяют построить более дешевую и удобную в эксплуатации в сравнении с другими ИСЗ систему связи (достаточно одного ИСЗ, нужна неподвижная антенна ЗС и другие причины). Поэтому ГО очень часто отдают предпочтение. Такая орбита у Земли всего одна, и орбитальные позиции для ИСЗ на ней предоставляются по решению Всемирной административной конференции по радио (ВАКР). Занято более 100 позиций. Если точность поддержания по долготе геостационарного спутника не хуже ±1°, то на ГО можно разместить до 180 ИСЗ. По мере развития спутниковых систем связи требования к точности поддержания по долготе ужесточаются. У существующих ИСЗ она составляет от ±1° до ±0,1°.

Через геостационарный спутник не могут работать ЗС, расположенные в высокоширотных районах, так как они не видны с ИСЗ (рисунок 5). Для ЗС, расположенных на экваторе, геостационарный спутник находится в зените. Другими словами, угол места (угол между направлениями на горизонт и на ИСЗ) составляет 90°.

Структурная схема цифрового ствола РРЛ - student2.ru

Рисунок 5 - К определению зоны видимости

В этом случае путь сигнала в атмосфере Земли самый короткий. Если же расположить ЗС на широте 81°, то ее антенна должна быть направлена на горизонт, т. е. b=0. С уменьшением (3 путь сигнала в атмосфере становится длиннее. При этом увеличивается ослабление сигнала при распространении в свободном пространстве. Возрастает также ослабление сигнала в атмосферной влаге и шумовая температура антенны за счет шумового излучения атмосферы. Если же b<5°, то резко увеличивается влияние шумового излучения Земли. Поэтому на практике МККР рекомендует обеспечивать углы места не менее 3...50 на частотах до 6 ГГц и 10... 15° на частотах свыше 10 ГГц.

Территория, с которой виден ИСЗ при минимальных углах места, называется зоной видимости. Для геостационарного ИСЗ при Р = 5° она располагается между 76 с. ш и 76° ю. ш, а по долготе занимает примерно третью часть экватора (заштрихованная область на рисунке 9.1). Предположим, что на ИСЗ установлена общая приемопередающая антенна. Если ее максимум излучения ориентирован на центр Земли, т. е. антенна создает прямой луч, а ширина главного лепестка ДН около 173° (под таким углом видна Земля с геостационарного ИСЗ), то все станции, расположенные в зоне видимости, могут поддерживать связь через ИСЗ. Если же на ИСЗ установлена узконаправленная антенна, то она освещает на Земле только часть зоны видимости, так называемую зону покрытия. Теперь связь через спутник может быть установлена только между ЗС, находящимися в зоне покрытия.

На рисунке 9.1 была рассмотрена КС, у которой зоны видимости и зона покрытия совпадают. Такая КС имеет глобальную зону покрытия и глобальную антенну. Глобальные антенны предпочтительны в случаях, когда надо охватить связью большие территории, например в международных ССС, узконаправленные - при создании национальных ССС. Во втором случае антенна ИСЗ прицелена в определенную точку на земной поверхности, а не на центр Земли, т. е. она дает наклонный луч. Зона покрытия имеет форму, максимально приближенную к границам государства, района и т. п. На современных многофункциональных ИСЗ устанавливают вместе и те, и другие антенны, причем узконаправленные антенны могут иметь несколько лучей, образующих на Земле свои зоны покрытия. Они получили название многолучевых антенн (МЛА). Если зоны покрытия МЛА не перекрываются, то передачу во всех лучах можно вести на одной и той же частоте. Таким образом, МЛА допускают многократное применение одной полосы частот и позволяют за счет этого повысить эффективность использования ГО.

Часть зоны покрытия, на которой действительно предусмотрена установка ЗС, называют зоной обслуживания. Наиболее эффективны ССС, в которых зоны покрытия и обслуживания совпадают.

Литература:

1 Тимищенко М. Г. Радиорелейные системы передачи прямой видимости: Учеб. пособие для техникумов. – М.: Радио и связь, 1982.-208 с.

2 Радиорелейные и спутниковые системы передачи: Учебник для вузов/ А. С. Немировский, О. С. Данилович, Ю. И. Маримонт и др. Под ред. А. С. Немировского. – М.: Радио и связь, 1986. – 360 с.

3 СВЧ диапазон. https:// school-collection.edu.ru

4 Радиорелейные системы. https: //extusur.net/content/2_radiosviaz/8.1.html

Наши рекомендации