Системы с интеллектуальным интерфейсом
Интеллектуальные базы данных отличаются от обычных баз данных возможностью выборки по запросу необходимой информации, которая может явно не храниться, а выводиться из имеющейся в базе данных. Примерами таких запросов могут быть следующие:
- “Вывести список товаров, цена которых выше среднеотраслевой”,
- “Вывести список товаров-заменителей некоторой продукции”,
- “Вывести список потенциальных покупателей некоторого товара” и т.д.
Для выполнения первого типа запроса необходимо сначала проведение статистического расчета среднеотраслевой цены по всей базе данных, а уже после этого собственно отбор данных. Для выполнения второго типа запроса необходимо вывести значения характерных признаков объекта, а затем поиск по ним аналогичных объектов. Для третьего типа запроса требуется сначала определить список посредников-продавцов, выполняющих продажу данного товара, а затем провести поиск связанных с ними покупателей.
Во всех перечисленных типах запросов требуется осуществить поиск по условию, которое должно быть доопределено в ходе решения задачи. Интеллектуальная система без помощи пользователя по структуре базы данных сама строит путь доступа к файлам данных. Формулирование запроса осуществляется в диалоге с пользователем, последовательность шагов которого выполняется в максимально удобной для пользователя форме. Запрос к базе данных может формулироваться и с помощью естественно-языкового интерфейса.
Естественно-языковой интерфейс предполагает трансляцию естественно-языковых конструкций на внутримашинный уровень представления знаний. Для этого необходимо решать задачи морфологического, синтаксического и семантического анализа и синтеза высказываний на естественном языке. Так, морфологический анализ предполагает распознавание и проверку правильности написания слов по словарям, синтаксический контроль - разложение входных сообщений на отдельные компоненты (определение структуры) с проверкой соответствия грамматическим правилам внутреннего представления знаний и выявления недостающих частей и, наконец, семантический анализ - установление смысловой правильности синтаксических конструкций. Синтез высказываний решает обратную задачу преобразования внутреннего представления информации в естественно-языковое.
Естественно-языковый интерфейс используется для:
· доступа к интеллектуальным базам данных;
· контекстного поиска документальной текстовой информации;
· голосового ввода команд в системах управления;
· машинного перевода c иностранных языков.
Гипертекстовые системы предназначены для реализации поиска по ключевым словам в базах текстовой информации. Интеллектуальные гипертекстовые системы отличаются возможностью более сложной семантической организации ключевых слов, которая отражает различные смысловые отношения терминов. Таким образом, механизм поиска работает прежде всего с базой знаний ключевых слов, а уже затем непосредственно с текстом. В более широком плане сказанное распространяется и на поиск мультимедийной информации, включающей помимо текстовой и цифровой информации графические, аудио и видео- образы.
Системы контекстной помощи можно рассматривать, как частный случай интеллектуальных гипертекстовых и естественно-языковых систем. В отличие от обычных систем помощи, навязывающих пользователю схему поиска требуемой информации, в системах контекстной помощи пользователь описывает проблему (ситуацию), а система с помощью дополнительного диалога ее конкретизирует и сама выполняет поиск относящихся к ситуации рекомендаций. Такие системы относятся к классу систем распространения знаний (Knowledge Publishing) и создаются как приложение к системам документации (например, технической документации по эксплуатации товаров).
Системы когнитивной графики позволяют осуществлять интерфейс пользователя с ИИС с помощью графических образов, которые генерируются в соответствии с происходящими событиями. Такие системы используются в мониторинге и управлении оперативными процессами. Графические образы в наглядном и интегрированном виде описывают множество параметров изучаемой ситуации. Например, состояние сложного управляемого объекта отображается в виде человеческого лица, на котором каждая черта отвечает за какой-либо параметр, а общее выражение лица дает интегрированную характеристику ситуации.
Системы когнитивной графики широко используются также в обучающих и тренажерных системах на основе использования принципов виртуальной реальности, когда графические образы моделируют ситуации, в которых обучаемому необходимо принимать решения и выполнять определенные действия.
Экспертные системы
Назначение экспертных систем заключается в решении достаточно трудных для экспертов задач на основе накапливаемой базы знаний, отражающей опыт работы экспертов в рассматриваемой проблемной области. Достоинство применения экспертных систем заключается в возможности принятия решений в уникальных ситуациях, для которых алгоритм заранее не известен и формируется по исходным данным в виде цепочки рассуждений (правил принятия решений) из базы знаний. Причем решение задач предполагается осуществлять в условиях неполноты, недостоверности, многозначности исходной информации и качественных оценок процессов.
Экспертная система является инструментом, усиливающим интеллектуальные способности эксперта, и может выполнять следующие роли:
· консультанта для неопытных или непрофессиональных пользователей;
· ассистента в связи с необходимостью анализа экспертом различных вариантов принятия решений;
· партнера эксперта по вопросам, относящимся к источникам знаний из смежных областей деятельности.
Экспертные системы используются во многих областях, среди которых лидирует сегмент приложений в бизнесе (рис. 1.2) [ 21 ].
Рис. 1.2. Области применения экспертных систем
Архитектура экспертной системы (рис.1.3) включает в себя два основных компонента: базу знаний (хранилище единиц знаний) и программный инструмент доступа и обработки знаний, состоящий из механизмов вывода заключений (решения), приобретения знаний, объяснения получаемых результатов и интеллектуального интерфейса. Причем центральным компонентом экспертной системы является база знаний, которая выступает по отношению к другим компонентам как содержательная подсистема, составляющая основную ценность. “Know-how” базы знаний хорошей экспертной системы оценивается в сотни тысяч долларов, в то время как программный инструментарий - в тысячи или десятки тысяч долларов.
База знаний - это совокупность единиц знаний, которые представляют собой формализованное с помощью некоторого метода представления знаний отражение объектов проблемной области и их взаимосвязей, действий над объектами и, возможно, неопределенностей, с которыми эти действия осуществляются.
Рис.1.3 Архитектура экспертной системы
В качестве методов представления знаний чаще всего используются либо правила, либо объекты (фреймы), либо их комбинация. Так, правила представляют собой конструкции:
Если < условие >
То <заключение> CF (Фактор определенности) <значение>
В качестве факторов определенности (CF), как правило, выступают либо условные вероятности байесовского подхода (от 0 до 1), либо коэффициенты уверенности нечеткой логики (от 0 до 100). Примеры правил имеют следующий вид:
Правило 1: Если Коэффициент рентабельности > 0.2
То Рентабельность = "удовл." CF 100
Правило 2: Если Задолженность = "нет" и Рентабельность = "удовл."
То Финансовое_сост. = "удовл." CF 80
Правило 3: Если Финансовое_сост. = "удовл." и Репутация="удовл."
То Надежность предприятия = "удовл." CF 90
Объекты представляют собой совокупность атрибутов, описывающих свойства и отношения с другими объектами. В отличие от записей баз данных каждый объект имеет уникальное имя. Часть атрибутов отражают типизированные отношения, такие как “род - вид” (super-class - sub-class), “целое - часть” и др. Вместо конкретных значений атрибутов объектов могут задаваться значения по умолчанию (указатель наследования атрибутов устанавливается в S), присущие целым классам объектов, или присоединенные процедуры (process). Пример описания объектов представлен на рис. 1.4.
Интеллектуальный интерфейс.Обмен данными между конечным пользователем и ЭС выполняет программа интеллектуального интерфейса, которая воспринимает сообщения пользователя и преобразует их в форму представления базы знаний и, наоборот, переводит внутреннее представление результата обработки в формат пользователя и выдает сообщение на требуемый носитель. Важнейшим требованием к организации диалога пользователя с ЭС является естественность, которая не означает буквально формулирование потребностей пользователя предложениями естественного языка, хотя это и не исключается в ряде случаев. Важно, чтобы последовательность решения задачи была гибкой, соответствовала представлениям пользователя и велась в профессиональных терминах.
Механизм вывода. Этот программный инструмент получает от интеллектуального интерфейса преобразованный во внутреннее представление запрос, формирует из базы знаний конкретный алгоритм решения задачи, выполняет алгоритм, а полученный результат предоставляется интеллектуальному интерфейсу для выдачи ответа на запрос пользователя.
ПРЕДПРИЯТИЕ_ОТРАСЛИ#1
Имя слота | Указатель наследования | Тип | Значение |
Super-сlass | U | FRAME | ROOT |
Sub-сlass | U | FRAME | Предприятие |
Код предприятия | U | String | |
Код отрасли | U | String | |
Отраслевой коэфф. рент. | U | Real |
ПРЕПРИЯТИЕ#1
Имя слота | Указатель наследования | Тип | Значение |
Super-сlass | S | FRAME | Предприятие отрасли |
Sub-сlass | - | - | - |
Код предприятия | S | String | |
Код отрасли | S | String | |
Отраслевой коэфф. рент. | S | Real | |
Коэфф. рент. | Real | ||
Задолженность | String | Нет | |
Репутация | String | Удовл | |
Фин.состояние | Process | Fin_sost | |
Надежность | Process | Nad |
Рис. 1.4. Описание объектов
В основе использования любого механизма вывода лежит процесс нахождения в соответствии с поставленной целью и описанием конкретной ситуации (исходных данных) относящихся к решению единиц знаний (правил, объектов, прецедентов и т.д.) и связыванию их при необходимости в цепочку рассуждений, приводящую к определенному результату. Для представления знаний в форме правил это может быть прямая (рис. 1.5) или обратная (рис. 1.6) цепочка рассуждений.
Для объектно-ориентированного представления знаний характерно применение механизма наследования атрибутов, когда значения атрибутов передаются по иерархии от вышестоящих классов к нижестоящим (например, на рис.1.4. код отрасли, отраслевой коэффициент рентабельности). Также при заполнении атрибутов фрейма необходимыми данными запускаются на выполнение присоединенные процедуры.
Рис. 1.5. Прямая цепочка рассуждений
Рис. 1.6. Обратная цепочка рассуждений
Механизм объяснения.В процессе или по результатам решения задачи пользователь может запросить объяснение или обоснование хода решения. С этой целью ЭС должна предоставить соответствующий механизм объяснения. Объяснительные способности ЭС определяются возможностью механизма вывода запоминать путь решения задачи. Тогда на вопросы пользователя "Как?" и "Почему?" получено решение или запрошены те или иные данные система всегда может выдать цепочку рассуждений до требуемой контрольной точки, сопровождая выдачу объяснения заранее подготовленными комментариями. В случае отсутствия решения задач объяснение должно выдаваться пользователю автоматически. Полезно иметь возможность и гипотетического объяснения решения задачи, когда система отвечает на вопросы, что будет в том или ином случае.
Однако, не всегда пользователя может интересовать полный вывод решения, содержащий множество ненужных деталей. В этом случае система должна уметь выбирать из цепочки только ключевые моменты с учетом их важности и уровня знаний пользователя. Для этого в базе знаний необходимо поддерживать модель знаний и намерений пользователя. Если же пользователь продолжает не понимать полученный ответ, то система должна быть способна в диалоге на основе поддерживаемой модели проблемных знаний обучать пользователя тем или иным фрагментам знаний, т.е. раскрывать более подробно отдельные понятия и зависимости, если даже эти детали непосредственно в выводе не использовались.
Механизм приобретения знаний. База знаний отражает знания экспертов (специалистов) в данной проблемной области о действиях в различных ситуациях или процессах решения характерных задач. Выявлением подобных знаний и последующим их представлением в базе знаний занимаются специалисты, называемые инженерами знаний. Для ввода знаний в базу и их последующего обновления ЭС должна обладать механизмом приобретения знаний. В простейшем случае это интеллектуальный редактор, который позволяет вводить единицы знаний в базу и проводить их синтаксический и семантический контроль, например, на непротиворечивость, в более сложных случаях извлекать знания путем специальных сценариев интервьюирования экспертов, или из вводимых примеров реальных ситуаций, как в случае индуктивного вывода, или из текстов, или из опыта работы самой интеллектуальной системы.
Классы экспертных систем. По степени сложности решаемых задач экспертные системы можно классифицировать следующим образом:
· По способу формирования решения экспертные системыразделяются на два класса: аналитические и синтетические. Аналитические системы предполагают выбор решений из множества известных альтернатив (определение характеристик объектов), а синтетические системы - генерацию неизвестных решений (формирование объектов).
· По способу учета временного признака экспертные системы могут быть статическими или динамическими. Статические системы решают задачи при неизменяемых в процессе решения данных и знаниях, динамические системы допускают такие изменения. Статические системы осуществляют монотонное непрерываемое решение задачи от ввода исходных данных до конечного результата, динамические системы предусматривают возможность пересмотра в процессе решения полученных ранее результатов и данных.
· По видам используемых данных и знаний экспертные системы классифицируются на системы с детерминированными (четко определенными) знаниями и неопределенными знаниями. Под неопределенностью знаний (данных) понимается их неполнота (отсутствие), недостоверность (неточность измерения), двусмысленность (многозначность понятий), нечеткость (качественная оценка вместо количественной).
· По числу используемых источников знаний экспертные системы могут быть построены с использованием одного или множества источников знаний. Источники знаний могут быть альтернативными (множество миров) или дополняющими друг друга (кооперирующими).
В соответствии с перечисленными признаками классификации, как правило, выделяются следующие четыре основные класса экспертных систем (рис. 1.7)
Анализ | Синтез | ||
Детерминирован-ность знаний | Классифици-рующие | Трансформи-рующие | Один источник знаний |
Неопределенность знаний | Доопределя-ющие | Многоагент-ные | Множество источн. знаний |
Статика | Динамика |
Рис. 1.7. Классы экспертных систем
Классифицирующие экспертные системы. К аналитическим задачам прежде всего относятся задачи распознавания различных ситуаций, когда по набору заданных признаков (факторов) выявляется сущность некоторой ситуации, в зависимости от которой выбирается определенная последовательность действий. Таким образом, в соответствии с исходными условиями среди альтернативных решений находится одно, наилучшим образом удовлетворяющее поставленной цели и ограничениям.
Экспертные системы, решающие задачи распознавания ситуаций, называются классифицирующими, поскольку определяют принадлежность анализируемой ситуации к некоторому классу. В качестве основного метода формирования решений используется метод логического дедуктивного вывода от общего к частному, когда путем подстановки исходных данных в некоторую совокупность взаимосвязанных общих утверждений получается частное заключение.
Доопределяющие экспертные системы. Более сложный тип аналитических задач представляют задачи, которые решаются на основе неопределенных исходных данных и применяемых знаний. В этом случае экспертная система должна как бы доопределять недостающие знания, а в пространстве решений может получаться несколько возможных решений с различной вероятностью или уверенностью в необходимости их выполнения. В качестве методов работы с неопределенностями могут использоваться байесовский вероятностный подход, коэффициенты уверенности, нечеткая логика. Доопределяющие экспертные системы могут использовать для формирования решения несколько источников знаний. В этом случае могут использоваться эвристические приемы выбора единиц знаний из их конфликтного набора, например, на основе использования приоритетов важности, или получаемой степени определенности результата, или значений функций предпочтений и т.д.
Для аналитических задач классифицирующего и доопределяющего типов характерны следующие проблемные области:
· Интерпретация данных - выбор решения из фиксированного множества альтернатив на базе введенной информации о текущей ситуации. Основное назначение - определение сущности рассматриваемой ситуации, выбор гипотез, исходя их фактов. Типичным примером является экспертная система анализа финансового состояния предприятия.
· Диагностика - выявление причин, приведших к возникновению ситуации. Требуется предварительная интерпретация ситуации с последующей проверкой дополнительных фактов, например, выявление факторов снижения эффективности производства.
· Коррекция - диагностика, дополненная возможностью оценки и рекомендации действий по исправлению отклонений от нормального состояния рассматриваемых ситуаций.
Трансформирующие экспертные системы. В отличие от аналитических статических экспертных систем синтезирующие динамические экспертные системы предполагают повторяющееся преобразование знаний в процессе решения задач, что связано с характером результата, который нельзя заранее предопределить, а также с динамичностью самой проблемной области.
В качестве методов решения задач в трансформирующих экспертных системах используются разновидности гипотетического вывода:
· генерации и тестирования, когда по исходным данным осуществляется генерация гипотез, а затем проверка сформулированных гипотез на подтверждение поступающими фактами;
· предположений и умолчаний, когда по неполным данным подбираются знания об аналогичных классах объектов, которые в дальнейшем динамически адаптируются к конкретной ситуации в зависимости от ее развития;
· использование общих закономерностей (метауправления) в случае неизвестных ситуаций, позволяющих генерировать недостающее знание.
Многоагентные системы. Для таких динамических систем характерна интеграция в базе знаний нескольких разнородных источников знаний, обменивающихся между собой получаемыми результатами на динамической основе, например, через "доску объявлений" (рис. 1.8).
Рис. 1.8. “Доска объявлений”
Для многоагентных систем характерны следующие особенности:
· Проведение альтернативных рассуждений на основе использования различных источников знаний с механизмом устранения противоречий;
· Распределенное решение проблем, которые разбиваются на параллельно решаемые подпроблемы, соответствующие самостоятельным источникам знаний;
· Применение множества стратегий работы механизма вывода заключений в зависимости от типа решаемой проблемы;
· Обработка больших массивов данных, содержащихся в базе данных;
· Использование различных математических моделей и внешних процедур, хранимых в базе моделей;
· Способность прерывания решения задач в связи с необходимостью получения дополнительных данных и знаний от пользователей, моделей, параллельно решаемых подпроблем.
Для синтезирующих динамических экспертных систем наиболее применимы следующие проблемные области:
· Проектирование - определение конфигурации объектов с точки зрения достижения заданных критериев эффективности и ограничений, например, проектирование бюджета предприятия или портфеля инвестиций.
· Прогнозирование - предсказание последствий развития текущих ситуаций на основе математического и эвристического моделирования, например, прогнозирование трендов на биржевых торгах.
· Диспетчирование - распределение работ во времени, составление расписаний, например, планирование графика освоения капиталовложений.
· Планирование - выбор последовательности действий пользователей по достижению поставленной цели, например, планирование процессов поставки продукции.
· Мониторинг - слежение за текущей ситуацией с возможной последующей коррекцией. Для этого выполняется диагностика, прогнозирование, а в случае необходимости планирование и коррекция действий пользователей, например, мониторинг сбыта готовой продукции.
· Управление - мониторинг, дополненный реализацией действий в автоматических системах, например, принятие решений на биржевых торгах.
По данным публикации [ 21 ], в которой проводится анализ 12500 действующих экспертных систем, распределение экспертных систем по проблемным областям имеет следующий вид (рис. 1.9):
Рис. 1.9. Проблемные области экспертных систем