Классификация архитектур по параллельной обработке данных
Чтобы дать более полное представление о многопроцессорных вычислительных системах, помимо высокой производительности необходимо назвать и другие отличительные особенности. Прежде всего, это необычные архитектурные решения, направленные на повышение производительности (работа с векторными операциями, организация быстрого обмена сообщениями между процессорами или организация глобальной памяти в многопроцессорных системах и др.).
Понятие архитектуры высокопроизводительной системы является достаточно широким, поскольку под архитектурой можно понимать и способ параллельной обработки данных, используемый в системе, и организацию памяти, и топологию связи между процессорами, и способ исполнения системой арифметических операций. Попытки систематизировать все множество архитектур впервые были предприняты в конце 60-х годов и продолжаются по сей день.
ВИДЫ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ
В зависимости от ряда признаков различают следующие вычислительные системы (ВС):
ü однопрограммные и многопрограммные (в зависимости от количества программ, одновременно находящихся в оперативной памяти);
ü индивидуального и коллективного пользования (в зависимости от числа пользователей, которые одновременно могут использовать ресурсы ВС);
ü с пакетной обработкой и разделением времени (в зависимости от организации и обработки заданий);
ü однопроцессорные, многопроцессорные и многомашинные (в зависимости от числа процессоров);
ü сосредоточенные, распределенные (вычислительные сети) и ВС с теледоступом (в зависимости от территориального расположения и взаимодействия технических средств);
ü работающие или не работающие в режиме реального времени (в зависимости от соотношения скоростей поступления задач в ВС и их решения);
ü универсальные, специализированные и проблемно-ориентированные (в зависимости от назначения).
В 1966 г. М.Флинном (Flynn) был предложен чрезвычайно удобный подход к классификации архитектур вычислительных систем. В его основу было положено понятие потока, под которым понимается последовательность элементов, команд или данных, обрабатываемая процессором. Соответствующая система классификации основана на рассмотрении числа потоков инструкций и потоков данных и описывает четыре архитектурных класса:
SISD = Single Instruction Single Data
MISD = Multiple Instruction Single Data
SIMD = Single Instruction Multiple Data
MIMD = Multiple Instruction Multiple Data
SISD (singleinstructionstream / singledatastream) – одиночный поток команд и одиночный поток данных. К этому классу относятся последовательные компьютерные системы, которые имеют один центральный процессор, способный обрабатывать только один поток последовательно исполняемых инструкций. В настоящее время практически все высокопроизводительные системы имеют более одного центрального процессора, однако каждый из них выполняет несвязанные потоки инструкций, что делает такие системы комплексами SISD-систем, действующих на разных пространствах данных. Для увеличения скорости обработки команд и скорости выполнения арифметических операций может применяться конвейерная обработка. В случае векторных систем векторный поток данных следует рассматривать как поток из одиночных неделимых векторов. Примерами компьютеров с архитектурой SISD могут служить большинство рабочих станций Compaq, Hewlett-Packard и SunMicrosystems.
MISD (multipleinstructionstream / singledatastream) – множественный поток команд и одиночный поток данных. Теоретически в этом типе машин множество инструкций должно выполняться над единственным потоком данных. До сих пор ни одной реальной машины, попадающей в данный класс, создано не было. В качестве аналога работы такой системы, по-видимому, можно рассматривать работу банка. С любого терминала можно подать команду и что-то сделать с имеющимся банком данных. Поскольку база данных одна, а команд много, мы имеем дело с множественным потоком команд и одиночным потоком данных.
SIMD (singleinstructionstream / multipledatastream) – одиночный поток команд и множественный поток данных. Эти системы обычно имеют большое количество процессоров, от 1024 до 16384, которые могут выполнять одну и ту же инструкцию относительно разных данных в жесткой конфигурации. Единственная инструкция параллельно выполняется над многими элементами данных. Примерами SIMD-машин являются системы CPP DAP, Gamma II и QuadricsApemille. Другим подклассом SIMD-систем являются векторные компьютеры. Векторные компьютеры манипулируют массивами сходных данных подобно тому, как скалярные машины обрабатывают отдельные элементы таких массивов. Это делается за счет использования специально сконструированных векторных центральных процессоров. Когда данные обрабатываются посредством векторных модулей, результаты могут быть выданы на один, два или три такта частотогенератора (такт частотогенератора является основным временным параметром системы). При работе в векторном режиме векторные процессоры обрабатывают данные практически параллельно, что делает их в несколько раз более быстрыми, чем при работе в скалярном режиме. Примерами систем подобного типа являются, например, компьютеры Hitachi S3600.
MIMD (multipleinstructionstream / multipledatastream) – множественный поток команд и множественный поток данных. Эти машины параллельно выполняют несколько потоков инструкций над различными потоками данных. В отличие от упомянутых выше многопроцессорных SISD-машин, команды и данные связаны, потому что они представляют различные части одной и той же задачи. Например, MIMD-системы могут параллельно выполнять множество подзадач с целью сокращения времени выполнения основной задачи. Большое разнообразие попадающих в данный класс систем делает классификацию Флинна не полностью адекватной. Действительно, и четырехпроцессорный SX-5 компании NEC, и тысячепроцессорныйCray T3E попадают в этот класс. Это заставляет использовать другой подход к классификации, иначе описывающий классы компьютерных систем. Основная идея такого подхода может состоять, например, в следующем. Будем считать, что множественный поток команд может быть обработан двумя способами: либо одним конвейерным устройством обработки, работающем в режиме разделения времени для отдельных потоков, либо каждый поток обрабатывается своим собственным устройством. Первая возможность используется в MIMD-компьютерах, которые обычно называют конвейерными или векторными, вторая – в параллельных компьютерах. В основе векторных компьютеров лежит концепция конвейеризации, т.е. явного сегментирования арифметического устройства на отдельные части, каждая из которых выполняет свою подзадачу для пары операндов. В основе параллельного компьютера лежит идея использования для решения одной задачи нескольких процессоров, работающих сообща, причем процессоры могут быть как скалярными, так и векторными.
Классификация архитектур вычислительных систем нужна для того, чтобы понять особенности работы той или иной архитектуры, но она не является достаточно детальной, чтобы на нее можно было опираться при создании МВС, поэтому следует вводить более детальную классификацию, которая связана с различными архитектурами ЭВМ и с используемым оборудованием.
1. Какая цель преследуется при разработке новой архитектуры высокопроизводительной системы?
2. Дайте определение понятию потока.
3. Характеристика класса SIMD
4. Сколько архитектурных классов входит в классификацию Флинна?
5. К какому архитектурному классу (по Флинну) относятся векторные системы?