Выявление уязвимостей компьютерных сетей. Системы обнаружения атак

Асимметричные криптоалгоритмы. Общие сведения об асимметричных криптоалгоритмах

Асимметричная криптография изначально задумана как средство передачи сообщений от одного объекта к другому (а не для конфиденциального хранения информации, которое обеспечивают только симметричные алгоритмы). Основная идея асимметричных криптоалгоритмов состоит в том, что для шифрования сообщения используется один ключ, а при дешифровании – другой.

В целом система переписки при использовании асимметричного шифрования выглядит следующим образом. Для каждого из N абонентов, ведущих переписку, выбрана своя пара ключей : "открытый" Ej и "закрытый" Dj, где j – номер абонента. Все открытые ключи известны всем пользователям сети, каждый закрытый ключ, наоборот, хранится только у того абонента, которому он принадлежит. Если абонент, скажем под номером 7, собирается передать информацию абоненту под номером 9, он шифрует данные ключом шифрования E9 и отправляет ее абоненту 9. Несмотря на то, что все пользователи сети знают ключ E9 и, возможно, имеют доступ к каналу, по которому идет зашифрованное послание, они не могут прочесть исходный текст, так как процедура шифрования необратима по открытому ключу. И только абонент №9, получив послание, производит над ним преобразование с помощью известного только ему ключа D9 и восстанавливает текст послания. Заметьте, что если сообщение нужно отправить в противоположном направлении (от абонента 9 к

SSL

SSL – это открытый протокол, разработанный компанией Netscape. SSL определяет механизм поддержки безопасности данных на уровне между протоколами приложений

и протоколом TCP/IP. Он поддерживает шифрование данных, аутентификацию серверов, целостность сообщений и (в качестве опции) аутентификацию клиентов в канале TCP/IP. SSL был представлен рабочей группе по безопасности консорциума W3 (W3C) для утверждения в качестве стандартного средства безопасности Web-браузеров и серверов в сети интернет.

Основная цель протокола SSL состоит в том, чтобы обеспечить защищенность и надежность связи между двумя подключенными друг к другу приложениями. Этот протокол состоит из двух уровней. На нижнем уровне многоуровневого транспортного протокола (например, TCP) он является протоколом записи и используется для инкапсуляции (то есть формирования пакета) различных протоколов. Для каждого инкапсулированного протокола он обеспечивает условия, при которых сервер и клиент могут подтверждать друг другу свою подлинность, выполнять алгоритмы шифрования и производить обмен криптографическими ключами, прежде чем протокол прикладной программы начнёт передавать и получать данные. Одно из преимуществ SSL состоит в том, что он независим от протоколов приложений. Протокол высокого уровня может совершенно прозрачно располагаться поверх протокола SSL. Протокол SSL поддерживает безопасность связи, придавая ей следующие свойства:

· Защищенность связи. После первоначального квитирования связи применяются средства шифрования и определяется секретный ключ. Для шифрования данных используются средства симметричной криптографии (например, DES, RC4 и т.д.).

· Участник сеанса связи может быть аутентифицирован и с помощью общих ключей, то есть средствами асимметричной криптографии (например, RSA, DSS и т.д.).

· Надежность связи. Транспортные средства проводят проверку целостности сообщений с помощью зашифрованного кода целостности (MAC). Для вычисления кодов MAC используются безопасные хэш-функции (например, безопасный хэш-алгоритм [SHA], МD5 и т.д.).

Для доступа к страницам, защищённым протоколом SSL, в URL вместо обычного префикса (schema) http, как правило, применяется префикс https (порт 443), указывающий на то, что будет использоваться SSL-соединение.

Для работы SSL требуется, чтобы на сервере имелся SSL сертификат.

данными, алгоритмы подразделяются на: 1. Перестановочные Блоки информации (байты, биты, более крупные единицы) не изменяются сами по себе, но изменяется их порядок следования, что делает информацию недоступной стороннему наблюдателю. 2. Подстановочные Сами блоки информации изменяются по законам криптоалгоритма. Подавляющее большинство современных алгоритмов принадлежит этой группе. В зависимости от размера блока информации криптоалгоритмы делятся на: 1. Потоковые шифры. Единицей кодирования является один бит. Результат кодирования не зависит от прошедшего ранее входного потока. Схема применяется в системах передачи потоков информации, то есть в тех случаях, когда передача информации начинается и заканчивается в произвольные моменты времени и может случайно прерываться. Наиболее распространенными предствателями поточных шифров являются скремблеры. 2. Блочные шифры Единицей кодирования является блок из нескольких байтов (в настоящее время 4-32). Результат кодирования зависит от всех исходных байтов этого блока. Схема применяется при пакетной передаче информации и кодировании файлов     7.Блочные шифры. Общие сведения о блочных шифрах Блочные шифры шифруют целые блоки информации (от 4 до 32 байт) как единое целое. Практически все алгоритмы используют для преобразований определенный набор биективных (обратимых) математических преобразований. Характерной особенностью блочных криптоалгоритмов является тот факт, что в ходе своей работы они производят преобразование блока входной информации фиксированной длины и получают результирующий блок того же объема, но недоступный для прочтения сторонним лицам, не владеющим ключом. Таким образом, схему работы блочного шифра можно описать функциями Z=EnCrypt(X,Key) и X=DeCrypt(Z,Key). Ключ является параметром блочного криптоалгоритма и представляет собой некоторый блок двоичной информации фиксированного размера. Криптоалгоритм именуется идеально стойким, если прочесть зашифрованный блок данных можно только перебрав все возможные ключи, до тех пор, пока сообщение не окажется осмысленным. В общем случае стойкость блочного шифра зависит только от длины ключа и возрастает экспоненциально с ее ростом. Кроме этого условия к идеально стойким криптоалгоритмам применяется еще одно очень важное требование – при известных исходном и зашифрованном значениях блока ключ, которым произведено это преобразование, можно узнать также только полным перебором. Все действия, производимые над данными блочным криптоалгоритмом, основаны на том факте, что преобразуемый блок может быть представлен в виде целого неотрицательного числа из диапазона, 11.Алгоритм шифрования RC4 Потоковый шифр RC4 (RC расшифровывается как Ron’s Code или Rivest’s Cipher) был разработан Роном Ривестом в 1987 году. Этот шифр позволяет использовать ключи размером от 8 до 2048 бит (с шагом 8). В RC4 для зашифрования и расшифрования применяются одни и те же действия: генерируется гамма, которая накладывается на шифруемое сообщение путем сложения по модулю 2 (операция XOR). Алгоритм применяется в различных системах защиты информации в компьютерных сетях (например, в протоколах SSL и TLS, алгоритме безопасности беспроводных сетей WEP, в таких продуктах, как Microsoft Office, Lotus Notes, Adobe Acrobat и др.   Рисунок 11.1 Общая схема алгоритма RC4. Ядро алгоритма состоит из функции генерации ключевого потока. Эта функция генерирует последовательность битов, которая затем объединяется с открытым текстом посредством суммирования по модулю два. Дешифрация состоит из регенерации этого ключевого потока и суммирования его с шифрограммой по модулю два, восстанавливая исходный текст. Другая главная часть алгоритма — функция инициализации, которая использует ключ переменной длины для создания начального состояния генератора ключевого потока. RC4 — фактически класс алгоритмов, определяемых размером его блока. Этот параметр n является размером слова для алгоритма. Обычно, n = 8. Для повышения безопасности необходимо увеличить эту величину. Внутреннее состояние RC4 состоит из массива размером 2n слов и двух счетчиков, каждый размером в одно слово. Массив обозначается как S-бокс. Он всегда содержит перестановку 2n возможных значений слова. Два счетчика обозначены через i и j.     12. Алгоритмы асимметричного шифрования Алгоритмы асимметричного шифрования используют два ключа: k1 - ключ зашифрования, или открытый, и k2 - ключ расшифрования, или секретный. Открытый ключ вычисляется из секретного: k1 = f(k2). Асимметричные алгоритмы шифрования основаны на применении однонаправленных функций. Согласно определению, функция y = f(x) является однонаправленной, если: ее легко вычислить для всех возможных вариантов x и для большинства возможных значений y достаточно сложно вычислить такое значение x, при котором y = f(x). Примером однонаправленной функции может служить умножение двух больших чисел: N = P*Q. Само по себе такое умножение - простая операция. Однако обратная функция (разложение N на два больших множителя), называемая факторизацией, по современным временным оценкам представляет собой достаточно сложную математическую задачу. Например, разложение на множители N размерностью 664 бит при P ? Q потребует выполнения примерно 1023 операций, а для обратного вычисления х для модульной экспоненты y = ax mod p при известных a, p и y (при такой же выбирает случайное число Хi < Q и вычисляет Yi = AXi mod Q. Аналогично пользователь J независимо выбирает случайное целое число Хj < Q и вычисляет Yj = AXj mod Q. Каждая сторона держит значение Х в секрете и делает значение Y доступным для другой стороны. Теперь пользователь I вычисляет ключ как К = (Yj)Xi mod Q, и пользователь J вычисляет ключ как K = (Yi)Xj mod Q. В результате оба получат одно и то же значение: K = (Yj)Xi mod Q = (AXj mod Q)Xi mod Q = (AXj )Xi mod Q по правилам модульной арифметики = AXj Xi mod Q = (AXj )Xj mod Q = (AXi mod Q)Xj mod Q = (Yi)Xj mod Q Таким образом, две стороны обменялись секретным ключом. Так как Хi и Хj являются закрытыми, противник может получить только следующие значения: Q, A, Yi и Yj. Для вычисления ключа атакующий должен взломать дискретный логарифм, т.е. вычислить Xj = inda, q (Yj) Следует заметить, что данный алгоритм уязвим для атак типа "man-in-the-middle". Если противник может осуществить активную атаку, т.е. имеет возможность не только перехватывать сообщения, но и заменять их другими, он может перехватить открытые ключи участников Yi и Yj , создать свою пару открытого и закрытого ключа (Xоп, Yоп) и послать каждому из участников свой открытый ключ. После этого каждый участник вычислит ключ, который будет общим с противником, а не с другим участником. Если нет контроля целостности, то участники не смогут обнаружить подобную подмену.   15.Простые хэш-функции Хэш-функцией называется односторонняя функция, предназначенная для получения дайджеста или "отпечатков пальцев" файла, сообщения или некоторого блока данных. Все хэш-функции выполняются следующим образом. Входное значение (сообщение, файл и т.п.) рассматривается как последовательность n-битных блоков. Входное значение обрабатывается последовательно блок за блоком, и создается m-битное значение хэш-кода. Одним из простейших примеров хэш-функции является побитный XOR каждого блока: Сi = bi1 Выявление уязвимостей компьютерных сетей. Системы обнаружения атак - student2.ru bi2 Выявление уязвимостей компьютерных сетей. Системы обнаружения атак - student2.ru . . . Выявление уязвимостей компьютерных сетей. Системы обнаружения атак - student2.ru bik Где
Сi - i-ый бит хэш-кода, 1 Выявление уязвимостей компьютерных сетей. Системы обнаружения атак - student2.ru i Выявление уязвимостей компьютерных сетей. Системы обнаружения атак - student2.ru n.
k - число n-битных блоков входа.
bij - i-ый бит в j-ом блоке.
Выявление уязвимостей компьютерных сетей. Системы обнаружения атак - student2.ru - операция XOR.

В результате получается хэш-код длины n, известный как продольный избыточный контроль. Это эффективно при случайных сбоях для проверки целостности данных.

Часто при использовании подобного продольного избыточного контроля для каждого блока выполняется однобитный циклический сдвиг после вычисления хэш-кода. Это можно описать следующим образом.

абоненту 7), то нужно будет использовать уже другую пару ключей (для шифрования ключ E7, а для дешифрования – ключ D7).

Таким образом, в асимметричных системах количество существующих ключей связано с количеством абонентов линейно (в системе из N пользователей используются 2*N ключей), а не квадратично, как в симметричных системах. Во-вторых, при нарушении конфиденциальности k-ой рабочей станции злоумышленник узнает только ключ Dk: это позволяет ему читать все сообщения, приходящие абоненту k, но не позволяет вывадавать себя за него при отправке писем. Кроме этого, асимметричные криптосистемы обладают еще несколькими очень интересными возможностями, которые мы рассмотрим через несколько разделов.

Выявление уязвимостей компьютерных сетей. Системы обнаружения атак

Обнаруживать, блокировать и предотвращать атаки можно несколькими путями. Первый способ - это обнаружение уже реализуемых атак. Этот способ применяется в "классических" системах обнаружения атак (например, RealSecure компании Internet Security Systems), межсетевых экранах и т.п. Второй путь - предотвратить атаки еще до их реализации. Осуществляется это путем поиска уязвимостей, которые могут быть использованы для реализации атаки. Третий путь - обнаружение уже совершенных атак и предотвращение их повторного осуществления.

Системы обнаружения атак (IDS - Intrusion Detection System) и системы предотвращения атак (IPS – Intrusion Prevention System) – основа защиты компьютеров корпоративной сети от несанкционированного доступа.

Система обнаружения атак - это программный или аппаратный комплекс для обнаружения неавторизованного доступа к рабочей станции или компьютерную сеть. IDS-системы позволяют обнаружить такие виды попыток неавторизованного доступа, как сетевые атаки на уязвимые сервисы и системы учёта/контроля пользователей, доступ к файлам локального компьютера или сети, а также активность вредоносного ПО (вирусов, троянов, червей).

Системы обнаружения атак обычно разделяют на две основные категории:

- Сетевые системы обнаружения атак (NIDS, от англ. Network intrusion detection system) – анализируют сетевой трафик по данным сенсоров, расположенных в ключевых узлах сети.

- Системы обнаружения атак на уровне хоста (HIDS, от англ. Host-based intrusion detection system) – обнаруживают вторжения посредством специальной службы, которая анализирует системные запросы, логи активности приложений, изменения файловой системы и другие процессы, происходящие на уровне хоста.

Существует также классификация систем обнаружения вторжений по алгоритмам анализа, который может быть основан на базе данных сигнатур либо использовать эвристический подход по результатам наблюдения за работой системы в нормальном («здоровом») режиме.

В чистом виде, системы обнаружения вторжений являются пассивным

SSH

Протокол Secure Shell (SSH) предназначен для защиты удаленного доступа и других сетевых услуг в незащищенной сети. Он поддерживает безопасный удаленный вход в сеть, безопасную передачу файлов и безопасную эстафетную передачу сообщений по протоколам TCP/IP и XII. SSH может автоматически шифровать, аутентифицировать и сжимать передаваемые данные.

Протокол SSH состоит из трех основных компонентов:

· Протокол транспортного уровня. Обеспечивает аутентификацию сервера, конфиденциальность и целостность данных с отличной защищенностью эстафетной передачи. В качестве опции может поддерживаться компрессия данных.

· Протокол аутентификации пользователя позволяет серверу аутентифицировать клиента.

· Протокол соединения мультиплексирует зашифрованный туннель, создавая в нем несколько логических каналов.

Все сообщения шифруются с помощью IDEA или одного из нескольких других шифровальных средств (тройного DES с тремя ключами, DES, RC4-128, Blowfish). Обмен ключами шифрования происходит с помощью RSA, а данные, использованные при этом обмене, уничтожаются каждый час (ключи нигде не сохраняются). Каждый центральный компьютер имеет ключ RSA, который используется для аутентификации центрального компьютера при использовании специальной технологии аутентификации RSA. Для защиты от подслушивания (спуфинга) сети IP используется шифрование; для защиты от DNS и спуфинга маршрутизации используется аутентификация с помощью общих ключей. Кроме того, ключи RSA используются для аутентификации центральных компьютеров.

Недостатком протоколов безопасности, действующих на уровне сессий, является их зависимость от инструкций протокола транспортного уровня.

Преимущества средств безопасности транспортного уровня включают:

· возможность действий на сквозной основе (end-to-end) с существующими стеками TCP/IP, существующими интерфейсами прикладного программирования (API) (WinSock, Berkeley Standard Distribution [BSD] и т.д.);

· повышенная эффективность по сравнению с медленными каналами, поддержка технологии Van Jacobson для компрессии заголовков, поддержка различных средств контроля за переполнением сети, просматривающих заголовки TCP/IP;

· отсутствие каких-либо проблем с фрагментацией, определением максимального объема блоков, передаваемых по данному маршруту (MTU) и т.д.;

· сочетание компрессии с шифрованием. На этом уровне такое сочетание оказывается гораздо более эффективным, чем на уровне пакетов.

Наши рекомендации